×
25.08.2017
217.015.b047

Результат интеллектуальной деятельности: Способ получения диоксида титана

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков. Способ получения диоксида титана включает нагрев сульфата титанила и аммония при постепенном повышении температуры и термообработку при 600-700°С с образованием газовой фазы, содержащей сульфатное и аммонийное соединения, и твердой фазы в виде анатазного диоксида титана, до обеспечения содержания в анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO в количестве 1,5-3,0 мас.% по отношению к TiO. Полученный анатазный диоксид титана подвергают механоактивации в шаровом измельчителе со скоростью вращения барабана 600-750 об/мин при отношении массы шаров к массе анатаза, равном 1:10-18, в течение 0,5-1,5 часов. После чего активированный продукт прокаливают при температуре 800-900°С с получением рутильного диоксида титана. Изобретение обеспечивает получение наноразмерного диоксида титана со стабильной структурой рутила и пониженным содержанием летучих соединений. 2 з.п. ф-лы, 4 пр.

Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков.

При получении функционального диоксида титана большое значение имеет направленное структурирование конечного продукта и обеспечение его требуемого состава. В известных способах не удается в полной мере контролировать формирование структуры и морфологию поверхности частиц диоксида титана. Это не позволяет получить наноразмерный диоксид титана со стабильной структурой рутила и минимальным содержанием летучих соединений для использования его в изделиях с повышенной термо- и светостойкостью.

Известен способ получения диоксида титана (см. пат. 2521392 США, МПК C01G 23/047, 23/053, 23/00, 1950), включающий термическую обработку сульфата титанила и аммония при температуре 850-1100°C в течение 1-2 часов с его плавлением. При этом образуется газовая фаза, содержащая летучие сернистые и аммонийные соединения, и твердая фаза в виде кристаллов диоксида титана рутильной структуры с размером частиц 0,1-0,5 мкм. Диоксид титана имеет следующие характеристики: содержание TiO2 95-97%, удельная поверхность частиц 12,5-15,0 м2/г, насыпная масса 750-870 г/дм3.

Недостатком данного способа является то, что в процессе плавления сульфата титанила и аммония происходит спекание частиц. Это затрудняет формирование диоксида титана в виде рутила и не позволяет получать наноразмерный продукт с высокой удельной поверхностью частиц, что необходимо для использования его в изделиях с повышенной термо- и светостойкостью.

Известен также принятый за прототип способ получения диоксида титана (см. пат. 2415812 РФ, МПК C01G 23/047 (2006.01), 2011), согласно которому сульфат титанила и аммония нагревают до температуры 650-850°C со скоростью 3-10 град/мин в присутствии карбоната или нитрата цинка, взятых в количестве 0,05-0,25 мас. % в пересчете на ZnO по отношению к содержанию TiO2 в сульфате титанила и аммония, и ведут термообработку при указанной температуре в течение 0,2-5,5 часов с образованием газовой фазы, содержащей сульфатное и аммонийное соединения, которую улавливают разбавленным раствором аммиака с получением сульфата аммония, и твердой фазы в виде диоксида титана с содержанием анатаза не менее 90%. Диоксид титана представляет собой порошок белого цвета, содержащий 97,6-98% TiO2. Удельная поверхность его составляет 25-70 м2/г, насыпная масса - 350-500 г/дм3.

К недостаткам известного способа относится то, что при термообработке сульфата титанила и аммония происходит частичное слипание частиц диоксида титана с образованием агрегатов анатазного диоксида титана с повышенным содержанием летучих веществ за счет адсорбции на их поверхности сульфатного соединения в виде триоксида серы SO3. Это не позволяет использовать полученный анатазный диоксид титана в изделиях с повышенной термо- и светостойкостью.

Настоящее изобретение направлено на достижение технического результата, заключающегося в получении наноразмерного диоксида титана со стабильной структурой рутила и пониженным содержанием летучих соединений для использования его в изделиях с повышенной термо- и светостойкостью.

Технический результат достигается тем, что в способе получения диоксида титана, включающем нагрев сульфата титанила и аммония при постепенном повышении температуры, его термообработку с образованием газовой фазы, содержащей сульфатное и аммонийное соединения, и твердой фазы в виде анатазного диоксида титана, согласно изобретению термообработку сульфата титанила и аммония ведут при 600-700°C до обеспечения содержания в анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве 1,5-3,0 мас. % по отношению к TiO2, полученный анатазный диоксид титана подвергают механоактивации в шаровом измельчителе со скоростью вращения барабана 600-750 об/мин при отношении массы шаров к массе анатаза, равном 1:10-18, в течение 0,5-1,5 часов, после чего активированный продукт прокаливают при температуре 800-900°C с получением рутильного диоксида титана.

Достижению технического результата способствует то, что нагрев сульфата титанила и аммония ведут со скоростью 5-7 град/мин.

Достижению технического результата способствует также то, что прокаливание активированного продукта ведут до достижения pH водной вытяжки рутильного диоксида титана не менее 6,5.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Термообработка соли сульфата титанила и аммония при 600-700°C обеспечивает полное разложение исходной соли и удаление требуемого количества сульфатной и аммонийной газовой фазы с образованием наноразмерных частиц анатазного диоксида титана. Термообработка сульфата титанила и аммония при температуре менее 600°C не обеспечивает полного разложения соли. Термообработка сульфата титанила и аммония при температуре более 700°C приводит к агломерированию и укрупнению частиц анатазного диоксида титана, что нежелательно.

Содержание в анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве 1,5-3,0 мас. % по отношению к TiO2 обеспечивает в итоге получение наноразмерного рутильного диоксида титана. Содержание в анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве менее 1,5 мас. % приводит к образованию микродисперсного продукта, а содержание сульфатного соединения более 3,0 мас. % не обеспечивает полноту формирования рутильного диоксида титана.

Механоактивация анатазного диоксида титана в шаровом измельчителе со скоростью вращения барабана 600-750 об/мин обеспечивает степень активации твердых частиц, необходимую для последующей перекристаллизации анатаза в рутил. Механоактивация со скоростью вращения барабана менее 600 об/мин значительно увеличивает продолжительность процесса, что приводит к повышению энергетических затрат, а механоактивация со скоростью вращения барабана более 750 об/мин технологически неоправдана по причине отсутствия заметного приращения результата.

Отношение массы шаров к массе анатаза, равное 1:10-18, обеспечивает условия наиболее полного контакта рабочих тел с активируемым материалом. Величина массы анатаза по отношению к массе шаров менее 10 приводит к неполному контакту, а величина массы анатаза по отношению к массе шаров более 18 практически не влияет на степень активации, снижая полезный объем барабана.

Продолжительность механоактивации в течение 0,5-1,5 часов позволяет достичь необходимую степень активации частиц без образования устойчивых агрегатов. Механоактивация в течение менее 0,5 часа не позволяет достичь нужной степени активации частиц, а продолжительность механоактивации более 1,5 часов приводит к слипанию частиц с образованием устойчивых агрегатов.

Прокаливание активированного продукта при температуре 800-900°C с получением рутильного диоксида титана обеспечивает условия для удаления остаточного количества сульфатного соединения SO3, что способствует полноте перекристаллизации анатаза в стабильную структуру рутила с сохранением наноразмерности частиц конечного продукта. При прокаливании активированного продукта при температуре ниже 800°C не достигается полного перехода анатаза в стабильную структуру рутила. Температура прокаливания активированного продукта выше 900°C приводит к спеканию частиц рутильного диоксида титана и увеличению их размера.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении наноразмерного диоксида титана со стабильной структурой рутила и пониженным содержанием летучих соединений для использования его в изделиях с повышенной термо- и светостойкостью.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Проведение нагрева сульфата титанила и аммония со скоростью 5-7 град/мин обеспечивает образование наноразмерного анатазного диоксида титана узкого фракционного состава. Нагревание со скоростью менее 5 и более 7 град/мин не позволяет получать фракционный состав анатазного диоксида титана, необходимый для формирования рутильного диоксида титана, используемого в изделиях с повышенной термо- и светостойкостью.

Прокаливание активированного продукта до достижения pH водной вытяжки рутильного диоксида титана не менее 6,5 обеспечивает его эффективное использование в изделиях с повышенной термо- и светостойкостью. Прокаливание активированного продукта до pH менее 6,5 не позволяет достигнуть требуемой степени удаления остаточного количества сульфатного соединения SO3, что исключает его использование в изделиях с повышенной термо- и светостойкостью.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения наноразмерного диоксида титана со стабильной структурой рутила и пониженным содержанием летучих соединений.

Сущность заявляемого способа может быть пояснена следующими примерами.

Пример 1. Берут 1000 г соли сульфата титанила и аммония, содержащей 215 г TiO2, нагревают ее со скоростью 6 град/мин до температуры 600°C. Проводят термообработку при этой температуре до обеспечения содержания в образующемся анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве 3 мас. % по отношению к TiO2. При этом получают газовую фазу, содержащую летучие сульфатное и аммонийное соединения, и твердую фазу в виде анатазного диоксида титана. Летучие соединения улавливают, а анатазный диоксид титана подвергают механоактивации в шаровом измельчителе со скоростью вращения барабана 750 об/мин при отношении массы шаров к массе анатаза, равном 1:10, в течение 0,5 часа. После этого активированный продукт прокаливают при температуре 800°C до достижения pH водной вытяжки рутильного диоксида титана, равного 6,5. Полученный продукт состоит из частиц размером 15 нм и представляет собой порошок белого цвета. Содержание в продукте рутила составляет 96,5%, SO3 - 0,2%, удельная поверхность - 65 м2/г, насыпная масса - 320 г/дм3.

Пример 2. Берут 1000 г соли сульфата титанила и аммония, содержащей 215 г TiO2, нагревают ее со скоростью 5 град/мин до температуры 700°C. Проводят термообработку при этой температуре до обеспечения содержания в образующемся анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве 1,5 мас. % по отношению к TiO2. При этом получают газовую фазу, содержащую летучие сульфатное и аммонийное соединения, и твердую фазу в виде анатазного диоксида титана. Летучие соединения улавливают, а анатазный диоксид титана подвергают механоактивации в шаровом измельчителе со скоростью вращения барабана 600 об/мин при отношении массы шаров к массе анатаза, равном 1:18, в течение 1 часа. После этого активированный продукт прокаливают при температуре 900°C до достижения pH водной вытяжки рутильного диоксида титана, равного 7,5. Полученный продукт состоит из частиц размером 25 нм и представляет собой порошок белого цвета. Содержание в продукте рутила составляет 97,4%, SO3 - 0,25%, удельная поверхность - 39,1 м2/г, насыпная масса - 450 г/дм3.

Пример 3. Берут 1000 г соли сульфата титанила и аммония, содержащей 215 г TiO2, нагревают ее со скоростью 7 град/мин до температуры 650°C. Проводят термообработку при этой температуре до обеспечения содержания в образующемся анатазном диоксиде титана сульфатного соединения в расчете на триоксид серы SO3 в количестве 2 мас. % по отношению к TiO2. При этом получают газовую фазу, содержащую летучие сульфатное и аммонийное соединения, и твердую фазу в виде анатазного диоксида титана. Летучие соединения улавливают, а анатазный диоксид титана подвергают механоактивации в шаровом измельчителе со скоростью вращения барабана 700 об/мин при отношении массы шаров к массе анатаза, равном 1:15, в течение 1,5 часов. После этого активированный продукт прокаливают при температуре 850°C до достижения pH водной вытяжки рутильного диоксида титана, равного 7,2. Полученный продукт состоит из частиц размером 21 нм и представляет собой порошок белого цвета. Содержание в продукте рутила составляет 97%, SO3 - 0,18%, удельная поверхность - 41,1 м2/г, насыпная масса - 380 г/дм3.

Пример 4 (по прототипу). Берут 1000 г соли сульфата титанила и аммония, содержащей 215 г TiO2, нагревают ее со скоростью 7,5 град/мин до температуры 750°C в присутствии карбоната цинка, расход которого равен 0,15 мас. % в пересчете на ZnO по отношению к содержанию TiO2 в сульфате титанила и аммония и выдерживают при указанной температуре в течение 2,5 часов с получением газовой фазы, содержащей летучие сернистое и аммонийное соединения, и твердой фазы в виде диоксида титана с содержанием около 100% анатаза. Газовую фазу, содержащую сернистое и аммонийное соединения, улавливают с использованием разбавленного 5% раствора аммиака, а полученный раствор упаривают с получением 1000 г сульфата аммония. Полученный анатазный диоксид титана представляет собой порошок белого цвета с размером частиц 0,75 мкм. Содержание в продукте TiO2 составляет 98%, SO3 - 1,09%, удельная поверхность - 70 м2/г, насыпная масса - 350 г/дм3.

Из анализа вышеприведенных Примеров видно, что по сравнению с прототипом предлагаемый способ позволяет получить наноразмерный (15-25 нм) рутильный диоксид титана со стабильной структурой и снизить в продукте содержание летучих соединений, в частности SO3, в 4,4-6,1 раза при сохранении прочих высоких свойств порошкообразного диоксида титана, что обеспечивает его эффективное использование в изделиях с повышенной термо- и светостойкостью. Способ согласно изобретению относительно прост и может быть реализован с привлечением стандартного оборудования.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 68.
20.01.2013
№216.012.1bd1

Способ изготовления композиционного строительного изделия

Изобретение относится к области строительства, а именно к способам изготовления композиционных строительных изделий. Изобретение позволит повысить прочность сцепления конструкционного и теплоизоляционного слоев изделия при сокращении продолжительности тепло-влажностной обработки. Способ...
Тип: Изобретение
Номер охранного документа: 0002472615
Дата охранного документа: 20.01.2013
27.04.2013
№216.012.3a78

Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов

Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. Способ включает очистку кислотной обработкой скрапа с удалением диоксида марганца. Затем ведут раскисление очищенного скрапа, его гидрирование, размол, дегидрирование при повышенной...
Тип: Изобретение
Номер охранного документа: 0002480529
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3cd7

Способ автоматического управления процессом жидкостной экстракции в вибрационной колонне

Изобретение относится к способу автоматического управления процессом жидкостной экстракции в экстракционных колоннах, преимущественно вибрационных, и может быть использовано в гидрометаллургических, нефтехимических, радиохимических и других производствах. Способ включает в себя регулирование...
Тип: Изобретение
Номер охранного документа: 0002481142
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d57

Способ получения основного хлорида алюминия

Изобретение относится к области химии. Берут активный гидроксид алюминия с удельным объемом пор не менее 0,2 см/г и средним диаметром пор не менее 2,5 нм и обрабатывают его газообразной соляной кислотой при массовом соотношении HCl:HO в газовой фазе 1-15:1 до достижения молярного отношения...
Тип: Изобретение
Номер охранного документа: 0002481270
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b91

Способ получения порошка ниобия

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов. Предложен способ получения порошка ниобия. Проводят восстановление парами магния или кальция оксидного...
Тип: Изобретение
Номер охранного документа: 0002484927
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.53e8

Способ переработки фосфогипса

Изобретение может быть использовано в химической промышленности для получения концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента. Способ переработки фосфогипса включает выщелачивание фосфогипса, содержащего РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002487083
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d4a

Способ переработки кианитового концентрата

Изобретение относится к способу переработки кианитового концентрата и может быть использовано при производстве глинозема, корундовых огнеупоров, керамики, силумина и алюминия. Способ включает смешение концентрата, углеродистого восстановителя и поризующей добавки в виде сульфата аммония,...
Тип: Изобретение
Номер охранного документа: 0002489503
Дата охранного документа: 10.08.2013
Показаны записи 1-10 из 72.
20.01.2013
№216.012.1bd1

Способ изготовления композиционного строительного изделия

Изобретение относится к области строительства, а именно к способам изготовления композиционных строительных изделий. Изобретение позволит повысить прочность сцепления конструкционного и теплоизоляционного слоев изделия при сокращении продолжительности тепло-влажностной обработки. Способ...
Тип: Изобретение
Номер охранного документа: 0002472615
Дата охранного документа: 20.01.2013
27.04.2013
№216.012.3a78

Способ переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов

Изобретение относится к области переработки скрапа анодов танталовых оксидно-полупроводниковых конденсаторов. Способ включает очистку кислотной обработкой скрапа с удалением диоксида марганца. Затем ведут раскисление очищенного скрапа, его гидрирование, размол, дегидрирование при повышенной...
Тип: Изобретение
Номер охранного документа: 0002480529
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3cd7

Способ автоматического управления процессом жидкостной экстракции в вибрационной колонне

Изобретение относится к способу автоматического управления процессом жидкостной экстракции в экстракционных колоннах, преимущественно вибрационных, и может быть использовано в гидрометаллургических, нефтехимических, радиохимических и других производствах. Способ включает в себя регулирование...
Тип: Изобретение
Номер охранного документа: 0002481142
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d57

Способ получения основного хлорида алюминия

Изобретение относится к области химии. Берут активный гидроксид алюминия с удельным объемом пор не менее 0,2 см/г и средним диаметром пор не менее 2,5 нм и обрабатывают его газообразной соляной кислотой при массовом соотношении HCl:HO в газовой фазе 1-15:1 до достижения молярного отношения...
Тип: Изобретение
Номер охранного документа: 0002481270
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4883

Способ получения титанового дубителя

Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана. Берут гидроксид титана, содержащий 30-80% TiO, смешивают его с сульфатом аммония при массовом отношении 1:0,05-0,2 в...
Тип: Изобретение
Номер охранного документа: 0002484143
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b91

Способ получения порошка ниобия

Изобретение относится к цветной металлургии и может быть использовано при металлотермическом получении нанокристаллических порошков ниобия преимущественно для электролитических конденсаторов. Предложен способ получения порошка ниобия. Проводят восстановление парами магния или кальция оксидного...
Тип: Изобретение
Номер охранного документа: 0002484927
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.53e8

Способ переработки фосфогипса

Изобретение может быть использовано в химической промышленности для получения концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента. Способ переработки фосфогипса включает выщелачивание фосфогипса, содержащего РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002487083
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d4a

Способ переработки кианитового концентрата

Изобретение относится к способу переработки кианитового концентрата и может быть использовано при производстве глинозема, корундовых огнеупоров, керамики, силумина и алюминия. Способ включает смешение концентрата, углеродистого восстановителя и поризующей добавки в виде сульфата аммония,...
Тип: Изобретение
Номер охранного документа: 0002489503
Дата охранного документа: 10.08.2013
+ добавить свой РИД