×
27.12.2019
219.017.f3ab

Результат интеллектуальной деятельности: Способ записи информации в кварцевом стекле

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптического материаловедения, в частности, к способу записи информации на носитель из кварцевого стекла под действием лазерного излучения. Запись производится за счет наведения поляризационно-зависимого двулучепреломления путем модифицирования кварцевого стекла сфокусированным пучком лазера, при этом лазер работает в инфракрасном диапазоне, излучая фемтосекундные импульсы. Энергия импульсов находится в диапазоне 20-30 нДж, при этом используется объектив с числовой апертурой 0,45-0,9. Изобретение позволяет увеличить скорость записи информации в кварцевом стекле. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области оптического материаловедения, в частности, к способу записи информации на носитель из кварцевого стекла под действием лазерного излучения. Полученный результат может быть использован для создания устройств долговечной пятимерной оптической памяти на кварцевом стекле со сверхплотной емкостью хранения информации и повышенной термической стабильностью.

Суть процесса записи информации на оптический носитель с помощью лазерного пучка можно представить как создание контраста между облученной областью и исходной средой - питов, в которых кодируются данные. При этом создаваемый контраст, который впоследствии является источником сигнала при считывании информации, в критической степени зависит от условий лазерного модифицирования.

Известен способ записи информации на аморфной халькогенидной пленке, в основе которого лежат фотоструктурные превращения при облучении с энергией, большей, чем ширина запрещенной зоны материала [RU 2298839]. Облучение производилось ртутной лампой или N2-лазером. Данный способ отличается низкой скоростью записи питов: процесс окисления, приводящий к образованию химических связей М-О (M=Ge, Ga) и просветлению пленки, протекает в течение более 10 мин. Плотность хранения данных в носителе такого типа ограничена двумя измерениями. Кроме того, термическая стабильность халькогенидов существенно более низкая по сравнению с оксидными стеклами.

Известен способ записи информации в фоточувствительном стекле, легированном ионами серебра [RU 2543670], с помощью фемтосекундного лазерного пучка с длиной волны в ближнем ИК диапазоне 0,8-1,1 мкм. Способ заключается в том, что при локальном воздействии фемтосекундных лазерных импульсов с длительностью 200 фс, энергией 1,67-10 мкДж и частотой следования 300 кГц на стекло, происходит восстановление ионов Ag+ за счет многофотонного поглощения и фотоионизации, что увеличивает интенсивность люминесценции облученной области. Хотя плотность хранения данных в приведенном способе более высокая по сравнению с предыдущим примером за счет использования третьей координаты, она ограничена возможностью записи 1 бит информации в одном пите. Недостатками данного способа является также низкая термическая стабильность (ниже 400°С) оптического носителя по сравнению с кварцевым стеклом.

Известен способ трехмерной записи информации в объеме стекол и кристаллов, содержащих в своем составе редкоземельные ионы, под действием импульсного лазерного излучения [US 6728154]. Для этого предлагается локально изменять валентное состояние редкоземельных ионов с помощью сфокусированного лазерного пучка и детектировать люминесценцию пита. Пиковая плотность мощности лазерного излучения должна находиться в диапазоне 108-1017 Вт/см2 и быть достаточной для изменения валентного состояния редкоземельных ионов. При этом пропускание области носителя данных, используемой для записи в трех измерениях, на длине волны записывающего лазера должно быть не ниже 30%. Поскольку в данном патенте для кодирования информации используется только два состояния люминесцирующих ионов (необлученные и облученные), недостатком предложенного способа является ограничение плотности записи информации одним битом в одной пространственной точке записи (пите).

Известен способ трехмерной записи информации лазерным пучком за счет контраста показателя преломления [Shiozawa, Manabu, et al. Simultaneous multi-bit recording in fused silica for permanent storage // Japanese Journal of Applied Physics - 52.9S2 (2013). 09LA01]. Для записи использовался титан-сапфировый лазер, генерирующий на длине волны 800 нм импульсы энергии в диапазоне 150-1400 нДж и длительностью 120 фс с частотой следования 1 кГц. Фокусировка в объем стекла осуществлялась с помощью объектива с числовой апертурой 0,7, и производилась запись 26 слоев с расстоянием 50 мкм между ними. Слои включали в себя точки, отличающиеся по яркости при наблюдении под микроскопом; их минимальная глубина составляла 25 мкм при коррекции аберраций. При этом показана термическая стабильность оптического носителя с записанной информацией при 1000°С в течение 2 часов. Основными недостатками способа является ограничение плотности записи информации одним битом в одной пространственной точке записи (пите), а также использование для считывания данных отраженного от пита света, что для обеспечения уверенного считывания точки требует уровня отражения не ниже некоторого порога. При многослойной записи данных на этом принципе слои, расположенные на пути лазерного пучка к считываемому слою, отражают часть данных, что приводит к постепенному ослаблению пучка и, в конечном итоге, ограничивает либо количество слоев, которые можно считывать с приемлемым соотношением «сигнал-шум», либо плотность записи питов в слое уровнем, выше которого потери проходящего пучка на отражение становятся неприемлемыми при считывании требуемого количества слоев.

Наиболее близкой к сути изобретения является работа, где описан способ пятимерной записи информации фемтосекундным лазерным пучком за счет поляризационно-зависимого двулучепреломления, величина которого зависит от условий облучения [Zhang, Jingyu, et al. "Seemingly unlimited lifetime data storage in nanostructured glass." Physical review letters 112.3 (2014): 033901.], принимаемая за прототип. Считывание данных проводилось путем анализа прошедшего света. При прохождении через облученную двулучепреломляющую область луч света разделяется на два взаимно ортогонально-поляризованных луча - обыкновенный и необыкновенный, между которыми возникает фазовый сдвиг, выражаемый в нм. Величина фазового сдвига определяется формулой:

где no и ne - показатели преломления для обыкновенного и необыкновенного луча соответственно, Δ - глубина двулучепреломляющей области в нм.

Сформированная лазерным пучком анизотропная область имеет «медленную» ось, т.е. направление, вдоль которого показатель преломления для необыкновенного луча максимален. Ранее в предыдущих работах [Shimotsuma, Yasuhiko, et al. "Self-organized nanogratings in glass irradiated by ultrashort light pulses." Physical review letters 91.24 (2003): 247405, Beresna, Martynas, et al. "Exciton mediated self-organization in glass driven by ultrashort light pulses." Applied Physics Letters 101.5 (2012): 053120.] авторами прототипа было установлено, что ориентация «медленной» оси пита перпендикулярна плоскости поляризации пучка лазера. Фазовый сдвиг пита возрастает при увеличении количества или энергии лазерных импульсов. Таким образом, кодирование информации возможно не только в трех пространственных измерениях, но и в нескольких направлениях «медленной» оси и уровнях фазового сдвига, что позволяет закодировать в одной пространственной точке более одного бита информации (т.е., реализуется принцип многоуровневой памяти). Это позволяет увеличить плотность записи информации на оптический носитель пропорционально числу бит, записанных в одной точке. Для записи питов применялась фемтосекундная лазерная система на кристалле калий-гадолиниевого вольфрамата, допированного иттербием. Лазерные импульсы длиной волны 1030 нм, длительностью 280 фс с частотой следования 200 кГц фокусировались в пятно размером меньше 1 мкм с помощью водно-иммерсионного объектива с числовой апертурой 1,2. Питы записывались на глубине 130-170 мкм через каждые 3,7 мкм послойно с расстоянием между слоями 20 мкм. Была показана запись трех слоев информации и продемонстрировано считывание с них. Авторами прототипа отмечено, что одним из критических параметров, лимитирующих скорость записи в предложенном им способе, является энергия импульса лазерного излучения. Для ускорения записи в прототипе пучок лазера с исходной энергией импульсов 6,3 мкДж разбивался с помощью пространственного модулятора света на максимум 100 лазерных пучков, т.е. минимальная энергия импульса для формирования пита составляла 63 нДж. Скорость записи при таких условиях составляла 6,3 КБ/с. Механизм образования анизотропной структуры под действием фемтосекундного лазерного пучка до настоящего времени находится под вопросом [Beresna, Martynas, et al. "Exciton mediated self-organization in glass driven by ultrashort light pulses." Applied Physics Letters 101.5 (2012): 053120.]. Поэтому для ускорения процесса записи информации с помощью двулучепреломляющих питов требуется экспериментальная оптимизация параметров лазерного излучения. Только определенные параметры лазерного пучка приводят к достижению кварцевым стеклом температурно-вязкостных характеристик, при которых формируются области с анизотропией.

Задачей, на решение которой направлено данное изобретение состоит в увеличении до трех раз скорости записи информации на оптический носитель из кварцевого стекла.

Технический результат, достижение которого обеспечивается при осуществлении настоящего изобретения согласно формуле, заключается в повышении скорости записи информации.

Поставленная задача решается таким способом записи информации в кварцевом стекле, при котором микрообласти с поляризационно-зависимым двулучепреломлением формируются путем модифицирования кварцевого стекла пучком лазера, излучающего на длине волны ближнего ИК диапазона фемтосекундные импульсы энергией от 20 до 30 нДж, причем лазерный луч фокусируется с помощью объектива с числовой апертурой от 0,45 до 0,9, обеспечивающей большую по сравнению с прототипом глубину фокуса. Таким образом, заявленное снижение энергии импульса лазерного излучения позволяет достигать трехкратного повышения скорости записи информации (до 18,9 КБ/с) на оптический носитель. В свою очередь, понижение числовой апертуры используемого объектива обеспечивает квадратичное увеличение глубины двулучепреломляющей области, а, следовательно, значение фазового сдвига пита и его уверенное считывание. При этом исходный лазерный пучек может быть разделен на 100-300 пучков.

Для создания питов в объеме полированного с двух сторон оптического носителя из кварцевого стекла применялась установка, в которой излучение ближнего ИК диапазона длиной волны 1030 нм с фемтосекундного регенеративного усилителя ослабляется до требуемого значения энергии импульса с помощью оптического аттенюатора, состоящего из вращающейся полуволновой пластины и призмы Глана, проходит еще одну полуволновую пластину, угол поворота которой определяет ориентацию линейной поляризации лазерного пучка, через систему зеркал попадает на объектив с числовой апертурой в диапазоне от 0,45 до 0,9, и фокусируется в объеме стекла. Величина энергии импульса лазерного излучения измерялась после оптического аттенюатора. Оптический носитель располагался на моторизованном трехкоординатном столе с точностью перемещения 0,2 мкм. Минимальная глубина фокусировки лазерного пучка составляла 20 мкм во избежание возможности образования трещин. При лазерном воздействии на кварцевое стекло образовывались питы - локальные области диаметром около 1,5 мкм, обладающие локальным поляризационно-зависимым двулучепреломлением. Для регистрации величины двулучепреломления (фазового сдвига) и ориентации «медленной» оси облученных областей может применяться, например, система Abrio Microbirefringence [US 7372567] на базе оптического поляризационного микроскопа Olympus ВХ51. При облучении стекла на большой глубине нужно принимать во внимание возникающие сферические аберрации, которые оказывают влияние на величину фазового сдвига питов. Проблема сферических аберраций может быть решена, в частности, применением пространственного модулятора света.

Рассмотрим частные примеры осуществления настоящего изобретения, отметив при этом, что настоящее изобретение не ограничивается описанными далее примерами.

Пример 1.

Кварцевое стекло облучают сфокусированными объективом с числовой апертурой 0,55 на глубине 30 мкм в пятно диаметром 1,5 мкм фемтосекундными лазерными импульсами с длиной волны 1,03 мкм, длительностью импульсов 300 фс, частотой повторения импульсов 200 кГц и средней мощностью 0,004-0,012 Вт (энергия импульса 20-30 нДж). Число импульсов варьируется от 4 до 16384 импульса на пит. В результате облучения получены массивы питов с ориентацией «медленной» оси 0° и 90° относительно первоначального направления поляризации лазерного излучения, фазовым сдвигом в диапазоне 7-38 нм (Фиг. 1). На записанную информацию не влияет термообработка при 600°С в течение 2 ч. Снижение энергии импульсов до 20 нДж в приведенном примере обеспечивает возможность разбивки лазерного пучка на 300 пучков и увеличения скорости записи до 18,9 КБ/с.

Пример 2.

Под воздействием сфокусированных с помощью объектива (числовая апертура 0,9) фемтосекундных импульсов на длине волны 1,03 мкм длительности 600 фс в интервале энергий 20-30 нДж при частоте следования импульсов 200 кГц в объеме кварцевого стекла сформирован массив питов на глубине 80 мкм. Питы различаются уровнем фазового сдвига в интервалах 10-30 с шагом 5 нм (Фиг. 2) и имеют ориентацию «медленной» оси 90° относительно плоскости поляризации лазерного излучения. Снижение энергии импульсов до 20 нДж в приведенном примере обеспечивает возможность разбивки лазерного пучка на 300 пучков и увеличения скорость записи до 18,9 КБ/с.

Таким образом, подтверждается возможность осуществления настоящего изобретения согласно формуле с достижением заявленного результата.


Способ записи информации в кварцевом стекле
Способ записи информации в кварцевом стекле
Источник поступления информации: Роспатент

Показаны записи 11-20 из 174.
29.12.2017
№217.015.f48b

Фильтрующий материал и способ его получения

Изобретение относится к области фильтрующих материалов и может быть использовано для сверхтонкой очистки воздуха от высокодисперсных аэрозолей в противоаэрозольных фильтрах, противогазах, респираторах и масках. Для получения фильтрующего материала осуществляют электроформование...
Тип: Изобретение
Номер охранного документа: 0002637952
Дата охранного документа: 08.12.2017
04.04.2018
№218.016.303a

Сердечник бронебойной пули

Изобретение относится к боеприпасам и, в частности, к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава с высокой пробивной способностью. Технический результат - повышение характеристик бронепробиваемости и, в том числе, возможности пробивания бронеплит на керамической...
Тип: Изобретение
Номер охранного документа: 0002644987
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3ba9

Нетканый многослойный материал для поглощения электромагнитного излучения в свч диапазоне

Изобретение относится к области радиофизики и предназначено для поглощения электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона, причем его структура и свойства отвечают требованиям создания элементов носимой одежды для маскировки человека в СВЧ диапазоне. Нетканый материал для...
Тип: Изобретение
Номер охранного документа: 0002647380
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d11

Способ получения керамической вставки для оружейных стволов

Изобретение относится к области огнестрельного оружия, а именно способу получения керамической вставки для ствола стрелкового оружия. Способ получения керамической вставки для оружейных стволов включает подготовку исходных смесей из керамических порошков и временного связующего, формование...
Тип: Изобретение
Номер охранного документа: 0002647948
Дата охранного документа: 21.03.2018
18.05.2018
№218.016.5139

Способ обнаружения шумящих объектов в мелком и глубоком море

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на...
Тип: Изобретение
Номер охранного документа: 0002653189
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5277

Гидроакустический комплекс для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника звука в мелком море

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и...
Тип: Изобретение
Номер охранного документа: 0002653587
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.55c5

Способ обнаружения шумящих в море объектов с помощью комбинированного приемника

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая...
Тип: Изобретение
Номер охранного документа: 0002654335
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c4d

Способ создания изгибов волноводов

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной...
Тип: Изобретение
Номер охранного документа: 0002655992
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6c55

Способ выявления в воздухе малых концентраций взрывчатых и наркотических веществ на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к области безопасности и газоанализаторов, а именно к способам обнаружения взрывчатых и/или наркотических веществ в воздухе. В основе изобретения лежит анализ ЭКоГ сигналов, снятых имплантированными в мозг крысы электродами. На первом этапе происходит обучение используемых...
Тип: Изобретение
Номер охранного документа: 0002659712
Дата охранного документа: 03.07.2018
06.07.2018
№218.016.6cb6

Способ хранения клеточных культур в суспензии

Изобретение относится к биологии и медицине и может быть использовано при хранении клеточных культур. Для криоконсервации используют контейнер с регулируемым объемом и возможностью его герметизации, при этом осуществляют вывод атмосферного газа из внутреннего объема контейнера и последующий...
Тип: Изобретение
Номер охранного документа: 0002660075
Дата охранного документа: 05.07.2018
Показаны записи 11-20 из 31.
27.03.2016
№216.014.db96

Способ локальной микрокристаллизации оксидных стекол

Изобретение относится к области оптического материаловедения, в частности к способу локальной кристаллизации легированных стекол под действием лазерного излучения. Техническим результатом изобретения является осуществление возможности кристаллизации стекла. Способ локальной микрокристаллизации...
Тип: Изобретение
Номер охранного документа: 0002579077
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.8bf2

Люминесцирующий стеклокристаллический материал

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, которые могут использоваться в качестве активной части конверторов в видимую область спектра УФ излучения солнечно-слепого диапазона. Технический результат изобретения - создание прозрачного стеклокристаллического...
Тип: Изобретение
Номер охранного документа: 0002604614
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.b7ba

Способ получения легкоплавкой стеклокомпозиции

Изобретение относится к легкоплавким стеклокристаллическим композиционным материалам для вакуумплотного низкотемпературного спаивания корундовой керамики. Технический результат – повышение механической прочности получаемых спаянных изделий и повышение технологичности получения стеклокомпозиций....
Тип: Изобретение
Номер охранного документа: 0002614844
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bdd3

Способ локальной кристаллизации стекол

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или...
Тип: Изобретение
Номер охранного документа: 0002616958
Дата охранного документа: 18.04.2017
29.12.2017
№217.015.f413

Фосфатное стекло и способ его получения

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: PO 58,00-70,00; KO 8,50-18,50; AlO 7,10-8,90; ВаО 9,80-11,50; BO 3,70-5,20; SiO 1,80-2,30; SnO 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты...
Тип: Изобретение
Номер охранного документа: 0002637676
Дата охранного документа: 06.12.2017
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1cae

Способ локальной нанокристаллизации бариевотитаносиликатных стекол

Изобретение относится к способу локальной нанокристаллизации оксидных стекол под действием лазерного излучения. Стекло состава ВаО 35-45 мол.%, ТiO 10-20 мол.%, SiO 40-50 мол.% облучают сфокусированным фемтосекундным пучком лазера, генерирующего на длине волны 1030 нм импульсы с частотой...
Тип: Изобретение
Номер охранного документа: 0002640606
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1d06

Способ получения конвертера поляризации

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком. Варку стекла проводят при температурах от 1650 до 1700°C. Состав стекла следующий, в мол.%: MgO 5-10, CaO 5-10,...
Тип: Изобретение
Номер охранного документа: 0002640603
Дата охранного документа: 10.01.2018
20.01.2018
№218.016.1dbb

Способ лазерного модифицирования стекла

Изобретение относится к способу модифицирования структуры стекла под действием лазерного пучка для формирования люминесцирующих микрообластей. Фосфатное стекло, содержащее ионы серебра, локально облучают фемтосекундными лазерными импульсами с длиной волны в ближнем инфракрасном диапазоне, с...
Тип: Изобретение
Номер охранного документа: 0002640836
Дата охранного документа: 12.01.2018
+ добавить свой РИД