×
29.12.2017
217.015.f48b

ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области фильтрующих материалов и может быть использовано для сверхтонкой очистки воздуха от высокодисперсных аэрозолей в противоаэрозольных фильтрах, противогазах, респираторах и масках. Для получения фильтрующего материала осуществляют электроформование полиакрилонитрильных нановолокон в электрическом поле высокого напряжения и одновременное укладывание образующегося нановолокна на нетканую подложку в 1-10 слоев, после чего складывают полученный материал вдвое или втрое. Формование осуществляют из раствора полиакрилонитрила в растворителе при концентрации 12-13 мас. %, вязкости раствора 0,9-1,4 Па⋅с, температуре 30-35°С, относительной влажности 7-17%, напряжении электрического поля, равном 65-70 кВ, при этом расстояние между формующим и осадительным электродами равно 170-190 мм. Нановолокна имеют диаметр, равный 180-250 нм, масса единицы площади нановолокнистого слоя составляет 1-7 г/м, сопротивление потоку воздуха при линейной скорости 1 см/с равно 47-150 Па. Обеспечивается улучшение значений эффективности фильтрации для частиц диаметром 0,3 мкм до 99,999999, для частиц диаметром 0,1 мкм до 99,99998%, упрощение процесса производства фильтрующего материала. 2 н. и 2 з.п. ф-лы, 2 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения фильтрующих материалов из нановолокон, предпочтительно используемых для сверхтонкой очистки воздуха от высокодисперсных аэрозолей, в частности, в противоаэрозольных фильтрах, противогазах, респираторах, масках, а также способам изготовления материалов из нановолокон.

Известен фильтрующий материал, получаемый электроформованием из раствора сополимера стирола с акрилонитрилом в смеси этилацетата с бутилацетатом при их массовом отношении в растворе от 1/9 до 9/1 соответственно. Раствор содержит также добавку высокомолекулярного полиметилметакрилата в количестве 0,001-0,01 масс. % (RU 2248838, 27.03.2005). Из данного материала изготавливают средства индивидуальной защиты органов дыхания типа "Лепесток", содержащие рабочий слой из заявленного материала, нанесенного на подложку из гигиенического материала, например аппретированной марли. Коэффициент проницаемости фильтрующего слоя составляет 0,01% при аэродинамическом сопротивлении 15 Па.

Существенными недостатками указанного технического решения являются, во-первых, сложность состава прядильных растворов, что обусловливает высокую трудоемкость их приготовления, и во-вторых - весьма низкая эффективность фильтрации высокодисперсных аэрозолей получаемым материалом.

Известен нетканый материал из полиамидных нановолокон с диаметром от 70 до 300 нм, полученный по технологии Nanospider из раствора полиамида в смеси уксусной и муравьиной кислот с концентрацией полиамида от 6 до 12 масс. %. Получение материала осуществляют способом электроформования в поле высокого напряжения, созданном за счет разности потенциалов между формующим заряженным вращающимся струнным электродом, частично погруженным в раствор полиамида, и осадительным электродом, размещенным напротив свободной поверхности формующего электрода. Образующиеся нановолокона укладывают на движущуюся в межэлектродном пространстве нетканую микроволокнистую полимерную подложку. Полученный материал используют в качестве рабочего слоя фильтрующего элемента средств индивидуальной защиты органов дыхания. Изобретение обеспечивает возможность эффективного задержания аэрозольных частиц, содержащихся в воздухе, при высокой термостабильности фильтрующего материала (RU 2477644, 20.03.2013). Масса единицы площади нановолокнистого слоя составляет 0,02-1,2 г/м2. Эффективность фильтрации по частицам NaCl с диаметром 0,1 мкм для наилучшего образца составляет 99,98%, сопротивление потоку воздуха (при линейной скорости 1 см/с) 25 Па.

Недостатком данного материала является недостаточный уровень фильтрующих свойств, обеспечивающий, согласно ГОСТ Р 51251-99, только высокую (класс Н13), но не сверхвысокую (классы U15-U17) эффективность фильтрации высокодисперсных аэрозолей, что необходимо при сверхтонкой очистке воздуха от наиболее опасных загрязняющих веществ. Недостатком способа его получения является необходимость соблюдения специальных мер, связанных с использованием агрессивного, коррозионно-активного растворителя с резким запахом.

Известен фильтрующий волокнистый материал, содержащий не менее 5% волокон в виде лент, имеющий поры со средним размером пор, не меньшим, чем средний размер удаляемой дисперсной фазы, и имеющий толщину, по крайней мере, в 2 раза превышающую средний размер пор (RU 2521378, 27.06.2014). Материал изготавливали из полисульфона формованием на подложку из полипропиленового спанбонда. Электроформование проводилось на лабораторной установке непрерывного действия NS-200S компании «Elmarco» в соответствии с техническим регламентом к установке, напряжение электроформования варьировалось в диапазоне 40-90 кВ. По эффективности фильтрации фильтрующий материал соответствует довольно высокому классу H14 (эффективность фильтрации по частицам 0,3 мкм составляет 99,999%). Гидродинамическое сопротивление при скорости потока газа 1 см/с - 48 Па.

Недостатком данного материала является недостаточная эффективность фильтрации при сверхтонкой очистке воздуха; важные подробности технологии получения (в частности, природа применяемого растворителя) в патенте не раскрыты.

Наиболее близким по достигаемому результату является нетканый материал, получаемый электростатическим формованием по капиллярной технологии на металлическом заземленном электроде, выполненном в виде цилиндра, из двух рабочих растворов полисульфона в дихлорэтане. Материал состоит из волокон полисульфона диаметром 2,5-4,6 мкм и 0,08-0,17 мкм при соотношении длин микронных и субмикронных волокон 1:17-25 и имеет гидродинамическое сопротивление при скорости фильтрации 1 см/с около 30 Па. Поверхностная плотность материала 27-29 г/м2. Эффективность фильтрации по частицам диаметром 0,3 мкм более 99,999% (RU 2492912, 20.09.2013). Изобретение может быть использовано при создании противоаэрозольных фильтров для средств индивидуальной и коллективной защиты органов дыхания. Материал также может использоваться в комбинации с другими материалами в качестве финишного слоя.

Недостатками данного материала и способа его получения являются недостаточная эффективность фильтрации при сверхтонкой очистке воздуха от наиболее опасных загрязняющих веществ, которая соответствует только фильтрам класса U15 (по ГОСТ Р 51251-99); необходимость применения токсичного дихлорэтана и использования двух прядильных растворов в недостаточно стабильной капиллярной технологии формования, что обусловливает технологическую и техническую сложность внедрения способа в производство.

Задачей настоящего изобретения является повышение эффективности фильтрации высокодисперсных аэрозолей нановолокнистым нетканым материалом до сверхвысокого уровня и разработка способа получения такого материала.

Техническим результатом, полученным при реализации изобретения, является улучшение значений эффективности фильтрации вплоть до 99,999999% для частиц диаметром 0,3 мкм и 99,99998% для частиц диаметром 0,1 мкм. Дополнительным техническим результатом является упрощение процедуры производства и повышение безопасности такой процедуры для персонала.

Техническая задача решается, а результат достигается тем, что:

фильтрующий материал, выполненный из полимерных нановолокон, полученный методом электроформования, размещенный на нетканой полимерной основе, отличается тем, что нановолокна выполнены из полиакрилонитрила и имеют диаметр, равный 180-250 нм, при этом масса единицы площади нановолокнистого слоя составляет 1-7 г/м2.

Также сопротивление потоку воздуха при линейной скорости 1 см/с равно 47-150 Па.

Способ получения описанного фильтрующего материала, включающий электроформование полимерных нановолокон в электрическом поле высокого напряжения, созданном за счет разности потенциалов между формующим и осадительным электродом, и одновременное укладывание образующегося нановолокна на движущуюся в межэлектродном пространстве нетканую подложку, отличается тем, что в качестве раствора полимера используют полиакрилонитрил, формование осуществляют из раствора полиакрилонитрила в растворителе при концентрации полимера в растворе 12-13 масс. %.

Также формующий электрод представляет собой вращающийся струнный электрод, частично погруженный в раствор полимера, а осадительный электрод размещен напротив свободной поверхности формующего электрода.

Также растворителем является диметилформамид.

Также вязкость раствора 0,9-1,4 Па⋅с, температура 30-35°C и относительная влажность 7-17%.

Также электроформирование производят при напряжении электрического поля, равном 65-70 кВ, при этом расстояние между формующим и осадительным электродами равно 170-190 мм, нановолокно укладывают на подложку последовательно в 1-10 слоев, после чего складывают полученный материал вдвое или втрое.

Поставленная задача решается описываемым фильтрующим материалом из полиакрилонитрильных (ПАН) нановолокон, полученных методом электроформования и размещенных на нетканой подложке из спанбонда в виде одного или нескольких слоев, а также описываемым способом получения такого материала, согласно которому осуществляют электроформование полиакрилонитрильных нановолокон в электрическом поле высокого напряжения от 65 кВ до 70 кВ, созданном за счет разности потенциалов между формующим заряженным вращающимся струнным электродом, частично погруженным в раствор полиакрилонитрила, и осадительным электродом, размещенным напротив свободной поверхности формующего электрода, и одновременно укладывают образующиеся нановолокна на движущуюся в межэлектродном пространстве нетканую подложку из спанбонда.

При меньших значениях напряжения образуется материал со слишком малой поверхностной плотностью и недостаточной эффективностью фильтрации.

Формование осуществляют из раствора полиакрилонитрила в диметилформамиде, при концентрации полимера в растворе 12-13 масс. % и вязкости раствора 0,9-1,4 Па⋅с (при 30°C), проводя осаждение в 1-10 слоев на одну подложку. После высушивания полученного материала для увеличения эффективности фильтрования возможно его механическое складывание вдвое или втрое.

При использовании растворов с концентрацией ниже 12 масс. % образуются более тонкие волокна с более плотной упаковкой, что приводит к существенному росту аэродинамического сопротивления. При концентрации выше 13 масс. % резко возрастает вязкость прядильного раствора, что приводит к образованию дефектов в структуре волокна в виде капель, вызывающих ухудшение эффективности фильтрации.

Предпочтительно формование осуществляют при температуре в зоне формования 30-35°C и относительной влажности 7-17%. Несоблюдение этих условий приводит к нестабильности процесса формования и получению неоднородного материала с неудовлетворительными фильтрационными характеристиками.

При формовании расстояние между формующим и осадительным электродами может составлять от 170 мм до 190 мм. При меньших расстояниях образуются волокна большего диаметра, эффективность фильтрования снижается. При расстояниях выше 190 мм получается материал, обладающий меньшим аэродинамическим сопротивлением, однако при этом снижается выход волокон из прядильного раствора.

Для осуществления заявленного способа по так называемой технологии Nanospider использован известный из уровня техники аппарат, описанный, например, в RU 2365686, 2009.

Получаемый нетканый материал имеет следующие характеристики:

- средний диаметр нановолокон, равный 180-250 нм;

- масса единицы площади нановолокнистого слоя, равная 1,0-7,0 г/м2;

- сопротивление потоку воздуха при линейной скорости 1 см/с, равное 47-150 Па.

Ниже приведены примеры получения материалов и их характеристики.

Пример 1

Готовят 12% раствор полиакрилонитрила в диметилформамиде с вязкостью 0,9 Па⋅с (при 30°C) для получения нановолокнистого материала с массой единицы площади слоя 4,0 г/м2.

Этот раствор наносится на поверхность заряженного струнного электрода при его вращении со скоростью 9 об/мин по технологии Nanospider при напряжении между электродами 70 кВ и при температуре в зоне формования 33°C и относительной влажности воздуха 8%. Образующиеся в поле высокого напряжения полиакрилонитрильные нановолокна укладывают на нетканую подложку из спанбонда, движущуюся в межэлектродном пространстве на расстоянии 0,2 см от осадительного электрода со скоростью 0,20 м/мин. Расстояние между электродами составляет 180 мм. Последовательно получают 2 слоя нановолокнистого материала. После извлечения полученного материала из установки складывают его вдвое (слоями спанбонда наружу).

Для исследования эффективности фильтрации полученный материал выдерживают на воздухе при комнатной температуре в течение 24 часов. Эффективность фильтрации с линейной скоростью 1,5 см/с по частицам диоктилфталата диаметром 0,3 мкм составляет 99,999981%.

Характеристики материала и условия получения сведены в таблицу 1.

Пример 2

Готовят 12,5% раствор полиакрилонитрила в диметилформамиде с вязкостью 1,2 Па⋅с (при 30°C) для получения нановолокнистого материала с массой единицы площади слоя 1,0 г/м2.

Этот раствор наносится на поверхность заряженного струнного электрода при его вращении со скоростью 7,4 об/мин по технологии Nanospider при температуре в зоне формования 35°C и относительной влажности воздуха 11%. Образующиеся полиакрилонитрильные нановолокна укладывают на нетканую подложку из спанбонда, движущуюся в межэлектродном пространстве на расстоянии 0,2 см от осадительного электрода со скоростью 0,13 м/мин. После извлечения полученного материала из установки складывают нановолокнистые слои втрое, помещая полученный трехслойный материал между двумя слоями спанбонда.

Для исследования эффективности фильтрации полученный материал выдерживают на воздухе при комнатной температуре в течение 24 часов. Эффективность фильтрации с линейной скоростью 1,5 см/с по частицам диоктилфталата диаметром 0,3 мкм составляет 99,999999%.

Характеристики материала и условия получения сведены в таблицу 1.

Пример 3

Готовят 13% раствор полиакрилонитрила в диметилформамиде с вязкостью 1,4 Па⋅с (при 30°C) для получения нановолокнистого материала с массой единицы площади слоя 7,0 г/м2.

Этот раствор наносится на поверхность заряженного струнного электрода при его вращении со скоростью 7,4 об/мин по технологии Nanospider при температуре в зоне формования 30°C и относительной влажности воздуха 17%. Образующиеся в поле высокого напряжения полиакрилонитрильные нановолокна укладывают на нетканую подложку из спанбонда, движущуюся в межэлектродном пространстве на расстоянии 0,2 см от осадительного электрода со скоростью 0,26 м/мин. Последовательно получают 10 слоев нановолокнистого материала.

Для исследования эффективности фильтрации полученный материал выдерживают на воздухе при комнатной температуре в течение 24 часов. Эффективность фильтрации с линейной скоростью 1,5 см/с по частицам диоктилфталата диаметром 0,3 мкм составляет 99,999998%.

Характеристики материала и условия получения сведены в таблицу 1.

Пример 4

Готовят 13% раствор полиакрилонитрила в диметилформамиде с вязкостью 1,4 Па⋅с (при 30°C) для получения нановолокнистого материала с массой единицы площади слоя 2,0 г/м2.

Этот раствор наносится на поверхность заряженного струнного электрода при его вращении со скоростью 6,2 об/мин по технологии Nanospider при температуре в зоне формования 34°C и относительной влажности воздуха 7%. Образующиеся полиакрилонитрильные нановолокна укладывают на нетканую подложку из спанбонда, движущуюся в межэлектродном пространстве на расстоянии 0,2 см от осадительного электрода со скоростью 0,13 м/мин. После извлечения полученного материала из установки складывают его вдвое (слоями спанбонда наружу).

Для исследования эффективности фильтрации полученный материал выдерживают на воздухе при комнатной температуре в течение 24 часов. Эффективность фильтрации с линейной скоростью 1,5 см/с по частицам диоктилфталата диаметром 0,3 мкм составляет 99,999997%.

Характеристики материала и условия получения сведены в таблицу 1. В таблице приведены и другие примеры получения фильтровальных материалов по предлагаемой технологии.

В таблице 2 приведены сравнительные характеристики описываемого материала, наиболее близкого аналога и основные условия их получения.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 175.
20.03.2013
№216.012.2f4d

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения волокнистых фильтрующих материалов. Фильтрующий материал выполнен из полиамидных нановолокон. Нановолокна получены методом электростатического формования, имеют диаметр от 70 до 300 нм при стандартном отклонении среднего диаметра волокна не более 30%,...
Тип: Изобретение
Номер охранного документа: 0002477644
Дата охранного документа: 20.03.2013
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
Показаны записи 1-10 из 24.
20.03.2013
№216.012.2f4d

Фильтрующий материал, способ его получения и применение

Изобретение относится к области получения волокнистых фильтрующих материалов. Фильтрующий материал выполнен из полиамидных нановолокон. Нановолокна получены методом электростатического формования, имеют диаметр от 70 до 300 нм при стандартном отклонении среднего диаметра волокна не более 30%,...
Тип: Изобретение
Номер охранного документа: 0002477644
Дата охранного документа: 20.03.2013
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
+ добавить свой РИД