×
14.12.2019
219.017.ee02

Устройство для переключения режимов работы оптоволоконного лазера и способ его изготовления

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптическим элементам для волоконных лазеров, в частности к насыщающимся поглотителям. Сутью изобретения является устройство для переключения режимов работы оптоволоконного лазера на основе управляемого насыщающегося поглотителя из углеродных нанотрубок, состоящее из подложки, на которой размещены электрод, противоэлектрод, отполированная до сердцевины часть оптоволокна, соединенная прямым контактом с электродом, выполненным в виде пленки из углеродных нанотрубок, при этом отполированная часть волокна, пленка и противоэлектрод соединены электрически между собой через ионную жидкость, и указанная пленка выполнена с возможностью изменения нелинейного поглощения на длине волны лазера при приложении разности потенциалов на электрод и противоэлектрод. Для создания устройства предложен способ, включающий следующие операции: получают пленку однослойных углеродных нанотрубок, выращенных методом химического осаждения из газовой фазы на частицах катализатора, пролетающих в газовом потоке через горячую зону печи и образующих указанные нанотрубки, осажденные на фильтре, установленном на выходе из печи, при этом изменением параметров синтеза подбирают диаметр нанотрубок, обеспечивающий максимальное поглощение для данной толщины пленки на длине волны лазера, закрепляют на подложке оптическое волокно, часть которого отполирована до сердцевины, прижимают путем прямого контакта пленку углеродных нанотрубок к плоской поверхности полированного волокна, рядом на подложке размещают электрод сравнения и противоэлектрод, покрывают пленку углеродных нанотрубок на плоской поверхности полированного волокна каплей ионной жидкости, таким образом, чтобы пленка, электрод сравнения и противоэлектрод оказались связанными ионной жидкостью. Технический результат осуществления изобретения заключается в увеличении стабильности и диапазона возможных режимов. 2 н. и 5 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к оптическим элементам для волоконных лазеров, в частности к насыщающимся поглотителям.

Уровень техники

Из уровня техники известен патент РФ №2485562, опубликованный 20 июня 2013 года, «Модуль насыщающегося поглотителя на основе полимерного композита с одностенными углеродными нанотрубками (варианты)». В документе описан модуль насыщающегося поглотителя на основе полимерного композита с одностенными (однослойными) углеродными нанотрубками на одномодовом оптическом волокне. Полимерный композит содержит полимер, смешанный с одностенными углеродными нанотрубками, выбранный поглощать излучение с необходимой длиной волны. Пленка композита с нанотрубками расположена на поверхности, сполированной вдоль одной плоскости оболочки волокна. Технический результат заключается в обеспечении повышения оптической стойкости поглотителя.

Из уровня техники известен патент РФ №2486647, опубликованный 27 июня 2013 года, «Полностью волоконный лазер со сверхкороткой длительностью импульса». В документе описан волоконный лазер со сверхкороткой длительностью импульса содержит последовательно установленные лазер накачки, модуль ввода излучения лазера накачки в волокно, легированное иттербием волокно, разветвитель, контроллер поляризации, устройство для обеспечения режима самозапуска и синхронизации мод, выполненное как интегрированный в оптическое волокно пленочный насыщающийся поглотитель на основе полимерного композита с одностенными углеродными нанотрубками. Часть волоконного лазера, содержащая легированное иттербием волокно, модуль ввода излучения лазера накачки в активное волокно, изолятор-поляризатор и волоконный разветвитель, выполнена из одномодового волокна с поддержкой поляризации. Пленочный насыщающийся поглотитель расположен на поверхности плоскости D-образно сполированной оболочки одномодового волокна, причем плоскость D-образно сполированной оболочки волокна выставлена так, чтобы поляризация проходящего излучения лежала в этой плоскости. Технический результат заключается в обеспечении возможности сохранения стабильной поляризации на выходе при генерации сверхкоротких импульсов на длине волны 1 мкм.

Также известна патентная заявка США № US 2013180650, опубликованная 18 июля 2013 года, «Single-walled carbon nanotube saturable absorber production via multi-vacuum filtration method», в которой представлен метод изготовления насыщающегося поглотителя на основе углеродных нанотрубок методом вакуумной фильтрации.

В качестве прототипа выбирается устройство, раскрытое в статье «Active control of all-fibre graphene devices with electrical gating. Nature Communications» от 2015 года авторов Lee, E.J., Choi, S.Y., Jeong, H., Park, N.H., Yim, W., Kim, M.H. Устройство насыщающегося поглотителя представляет собой подложку, на которой зафиксирована часть D-образно сполированной оболочки волокна, а также размещены электроды. При этом к электродам и сполированной оболочке волокна прижимается пленка графена в ионной жидкости. Устройство позволяет эффективно контролировать поглощение в волокне. Недостатком является то, что графен является полуметаллом. В результате он имеет малое просветление под действием света (глубина модуляции).

Полупроводниковые нанотрубки обладают существенно отличающейся от графена структурой - это полупроводник с запрещенной зоной порядка 1 eV. Это приводит к большей величине просветления (глубине модуляции). Большая глубина модуляции увеличивает стабильность импульсной генерации и диапазон возможных режимов импульсной генерации.

Техническая задача и технический результат

Технической задачей, на решение которой направлено заявленное изобретение, является разработка устройства для переключения импульсных режимов работы оптоволоконного лазера и способ его изготовления, который требует меньше технологических операций.

Технический результат осуществления изобретения совпадает с технической задачей, а также обеспечивает создание устройства для переключения режимов работы оптоволоконного лазера, обладающего повышенной стабильностью.

Решение

Для достижения технического результата предлагается устройство для переключения режимов работы оптоволоконного лазера на основе управляемого насыщающегося поглотителя из углеродных нанотрубок, состоящее из подложки, на которой размещены электрод, противоэлектрод, отполированная до сердцевины часть оптоволокна, соединенная прямым контактом с электродом, выполненным в виде пленки из углеродных нанотрубок, при этом отполированная часть волокна, пленка и противоэлектрод соединены электрически между собой через ионную жидкостью, и указанная пленка выполнена с возможностью изменения нелинейного поглощения на длине волны лазера при приложении разности потенциалов на электрод и противоэлектрод.

Устройство может быть выполнено таким образом, что в качестве ионной жидкости используют C2mim BF4, или DEME BF4, или C2mim PF6, или EMI BF4, или MEMP TFS с рабочим окном от -2 В до 2 В. При этом устройство может включать электрод сравнения.

Для достижения технического результата предлагается способ изготовления устройства для переключения режимов работы оптоволоконного лазера, включающий следующие операции:

- получают пленку однослойных (одностенных) углеродных нанотрубок, выращенных методом химического осаждения из газовой фазы на частицах катализатора пролетающих в газовом потоке через горячую зону печи и образующих указанные нанотрубки, осажденные на фильтре, установленном на выходе из печи, при этом изменением параметров синтеза подбирают диаметр нанотрубок, обеспечивающий максимальное поглощение для данной толщины пленки на длине волны лазера,

- закрепляют на подложке оптическое волокно, часть которого отполирована до сердцевины,

- прижимают путем прямого контакта пленку углеродных нанотрубок к плоской поверхности полированного волокна,

- рядом на подложке размещают электрод сравнения и противоэлектрод,

- покрывают пленку углеродных нанотрубок на плоской поверхности полированного волокна каплей ионной жидкости, таким образом, чтобы пленка, электрод сравнения и противоэлектрод оказались связанными ионной жидкостью.

Частным случаем реализации способа является вариант, при котором проводят все операции в атмосфере аргона и затем устройство для переключения режимов работы лазера изолируется от воздуха.

Другим частным случаем реализации способа является вариант, при котором используется лазер на длине волны 1560 нм, и при этом диаметр нанотрубок, прижатых к волокну, составляет от 1.3 нм до 1.4 нм.

Описание чертежей

На фигуре 1 представлено распространение моды через волокно, полированное до сердцевины (D-форма в сечении или сполированное волокно), а также указаны ТМ и ТЕ моды пленки. При этом поз. 1 - полированная поверхность волокна, поз. 2 - сердцевина оптического волокна, поз. 3 оболочка.

На фиг. 2-5 представлены этапы создания устройства для переключения режимов работы оптоволоконного лазера в разрезе. На схеме введены следующие обозначения поз. 4 - стеклянные подложки, поз. 5 - пленка из нанотрубок, поз. 6 - ионная жидкость, поз. 7 - электрод сравнения, поз. 8 - противоэлектрод.

На фиг. 6 представлена возможная схема использования устройства для переключения режимов работы оптоволоконного лазера. Введены следующие обозначения: поз. 14 - лазерный светодиод, поз. 15 - мультиплексор с разделением по длине волны (WDM), поз. 9 - легированное эрбием волокно (EDFA), поз. 10 - изолятор (ISO 1550), поз. 11 - устройство для переключения режимов работы оптоволоконного лазера, поз. 12 - элемент для контроля поляризации, поз. 13 - светоделитель, выводящий лазерное излучение наружу через волокно.

Детальное описание решения

В описании данного изобретения термины «включает» и «включающий» интерпретируются как означающие «включает, помимо всего прочего». Указанные термины не предназначены для того, чтобы их истолковывали как «состоит только из».

Если не определено отдельно, технические и научные термины в данной заявке имеют стандартные значения, общепринятые в научной и технической литературе.

Предлагаемое изобретение относится к генерации импульсов в волоконных лазерах с использованием насыщающегося поглотителя на однослойных углеродных нанотрубках (SWCNTs) без полимера, синтезированных методом аэрозольного синтеза. Преимуществами решения являются широкий спектральный диапазон работы, высокая энергия, низкая себестоимость, технологичность.

Сутью решения является устройство для переключения режимов работы оптоволоконного лазера (фиг. 2-5), состоящее из полированного оптоволокна (1, 2, 3) и пленки углеродных нанотрубок (5), соединенных друг с другом путем прямого контакта без использования полимерной матрицы или поверхностно-активных веществ, и помещенных в ионную жидкость (6), при этом данная пленка углеродных нанотрубок выполнена с возможностью изменения поглощения световых волн в определенном диапазоне при подаче напряжения на электроды (5, 7, 8).

Углеродные нанотрубки на поверхности полированного волокна (фиг. 1, поз. 1) взаимодействуют с эванесцентной волной и работают как насыщающийся поглотитель. Управление поглощением осуществляется при подаче напряжения на углеродные нанотрубки (5), помещенные в ионную жидкость (6), и противоэлектрод (8), выполненный из проводящего материала и помещенного в ту же ионную жидкость. Изменение поглощения углеродных нанотрубок на рабочей длине волны лазера позволяет осуществлять контролируемое воспроизводимое переключение режимов импульсной генерации волоконного лазера - синхронизации мод и модуляции добротности.

Синтез нанотрубок осуществляется методом химического осаждения из газовой фазы при пролете частицы катализатора в газовом потоке через горячую зону печи. На выходе из печи нанотрубки собираются на фильтре, образуя однородную пленку. Толщина пленки определяется временем сбора нанотрубок.

Пленка нанотрубок на фильтре может быть перенесена на любую подложку методом сухого переноса. В данном методе пленка прислоняется к подложке и после небольшого давления переходит с фильтра на подложку. Этот метод может быть масштабируем на массовое производство. При этом пленка состоит из полупроводниковых и металлических нанотрубок с долей полупроводниковых 2/3 или более. В качестве ионных жидкостей могут использоваться C2mim BF4, DEME BF4, C2mim PF6, EMI BF4, MEMP TFSI или любые аналоги.

Важным отличием предлагаемого изобретения является другая технология изготовления, при которой требуется только один шаг, а не три как в случае с графеном. Более того, поскольку графен является полуметаллом, то имеет малое просветление под действием света (глубина модуляции). Использование смеси углеродных нанотрубок: 2/3 полупроводниковых, 1/3 металлических, - дает следующие преимущества. Полупроводниковые нанотрубки обладают существенно отличающейся от графена структуруй - это полупроводник с запрещенной зоной порядка 1 eV. Это приводит к большей величине просветления (глубине модуляции). Большая глубина модуляции увеличивает стабильность импульсной генерации и диапазон возможных режимов импульсной генерации. Металлические нанотрубки в смеси обеспечивают быстродействие насыщающегося поглотителя.

На фиг. 6 изображен пример использования устройства для переключения режимов работы оптоволоконного лазера (11). При реализации эксперимента использовалось 10 м волокна, легированного эрбием (9), которое накачивалось при помощи лазерного диода BL976-PAG500 (14) на длине волны 980 нм, который подсоединялся к кольцевому резонатору через мультиплексор с разделением по длине волны (15). Через светоделитель (13) 50% лазерного излучения выводилось наружу из резонатора, на другом конце резонатора установлен изолятор 10 (ISO 1550). Устройство для контроля поляризация излучения (12) замыкает кольцевой резонатор и соединяется с мультиплексором 15. Общая длина собранного лазера составляет 20 м. Длина волны выходящего из резонатора лазерного излучения составляет 1560 нм.

В лазере на фиг. 6 использовалось устройство для переключения режимов работы оптоволоконного лазера (11), в которых насыщающийся поглотитель на однослойных углеродных нанотрубках имел нанотрубки определенного диаметра. Толщина пленки углеродных нанотрубок рассчитывается из эмпирической формулы

D=-417 lg (T),

где D - толщина пленки (диаметр нанотрубок), Т - прозрачность пленки на длине волны лазера. Так для случая 40% пропускания толщина пленки углеродных нанотрубок равна 170 нм, а в случае 60% пропускания толщина нанотрубок должна быть равна 90 нм.

Несмотря на то, что изобретение описано со ссылкой на раскрываемые варианты воплощения, для специалистов в данной области должно быть очевидно, что конкретные подробно описанные случаи приведены лишь в целях иллюстрирования настоящего изобретения, и их не следует рассматривать как каким-либо образом ограничивающие объем изобретения. Должно быть, понятно, что возможно осуществление различных модификаций без отступления от сути настоящего изобретения.


Устройство для переключения режимов работы оптоволоконного лазера и способ его изготовления
Устройство для переключения режимов работы оптоволоконного лазера и способ его изготовления
Устройство для переключения режимов работы оптоволоконного лазера и способ его изготовления
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
07.06.2019
№219.017.7565

Метод получения прочного и токопроводящего волокна путем вытягивания пленок из углеродных нанотрубок

Изобретение относится к нанотехнологии и может быть использовано при изготовлении специализированной одежды, умных тканей, сенсорных датчиков, легких композитных материалов, гибкой и растяжимой электроники. Сначала получают плёнку, состоящую из случайно ориентированных углеродных нанотрубок, с...
Тип: Изобретение
Номер охранного документа: 0002690821
Дата охранного документа: 05.06.2019
01.02.2020
№220.017.fc9b

Средство разрезания днк на основе cas9 белка из defluviimonas sp.

Изобретение относится к биотехнологии и описывает новую бактериальную нуклеазу системы CRISPR-Cas9 из бактерии . 20V17, а также ее применение для образования строго специфичных двунитевых разрывов в молекуле ДНК. Данная нуклеаза обладает необычными свойствами и может быть использована в...
Тип: Изобретение
Номер охранного документа: 0002712492
Дата охранного документа: 29.01.2020
01.02.2020
№220.017.fcdb

Средство разрезания днк на основе cas9 белка из биотехнологически значимой бактерии clostridium cellulolyticum

Изобретение относится к биотехнологии и касасется применения белка, содержащего аминокислотную последовательность SEQ ID NO: 1, или содержащего аминокислотную последовательность, которая по меньшей мере на 95% идентична аминокислотной последовательности SEQ ID NO: 1 и имеет отличия по сравнению...
Тип: Изобретение
Номер охранного документа: 0002712497
Дата охранного документа: 29.01.2020
13.03.2020
№220.018.0b42

Пептидный антагонист нмда-рецептора

Изобретение относится к биологически-активным веществам пептидной природы, применяемым в качестве средства для лечения депрессии, большого депрессивного расстройства, нейропатической боли и обладающим нейропротекторной активностью. Предложено применение фармацевтической композиции, содержащей...
Тип: Изобретение
Номер охранного документа: 0002716258
Дата охранного документа: 11.03.2020
27.03.2020
№220.018.1080

Snp-панель для генотипирования и геномной селекции подсолнечника по содержанию жирных кислот в масле семян

Изобретение относится к области биохимии, в частности к способу отбора сорта семян подсолнечника с повышенным или пониженным содержанием жирных кислот, выбранных из группы: 16:2, 18:1, 18:2, 18:3 и 20:2. Изобретение позволяет эффективно определять содержание жирных кислот. 6 з.п. ф-лы, 1 ил., 3...
Тип: Изобретение
Номер охранного документа: 0002717642
Дата охранного документа: 24.03.2020
04.06.2020
№220.018.23f8

Способ идентификации веществ с использованием масс-спектрометра

Группа изобретений относится к идентификации химических соединений с применением хромато-масс-спектрометра. Раскрыт способ идентификации химического соединения, включающий следующие стадии: вводят растворенное в полярном растворителе химическое соединение в хроматограф, после чего после выхода...
Тип: Изобретение
Номер охранного документа: 0002722657
Дата охранного документа: 02.06.2020
07.06.2020
№220.018.24ee

Средство разрезания днк на основе cas9 белка из бактерии demequina sediminicola

Изобретение относится к биотехнологии и касасется применения белка, содержащего аминокислотную последовательность SEQ ID NO: 1 или содержащего аминокислотную последовательность, которая по меньшей мере на 95% идентична аминокислотной последовательности SEQ ID NO: 1 и имеет отличия по сравнению...
Тип: Изобретение
Номер охранного документа: 0002722933
Дата охранного документа: 05.06.2020
07.06.2020
№220.018.2520

Средство разрезания днк на основе cas9 белка из бактерии pasteurella pneumotropica

Изобретение относится к биотехнологии. Описано применение белка, способного образовывать двунитевой разрыв в последовательности ДНК, непосредственно примыкающей к последовательности 5'-NNNN(A/G)T-3', содержащего аминокислотную последовательность SEQ ID NO: 1 или содержащего аминокислотную...
Тип: Изобретение
Номер охранного документа: 0002722934
Дата охранного документа: 05.06.2020
25.06.2020
№220.018.2aac

Применение cas9 белка из бактерии pasteurella pneumotropica для модификации геномной днк в клетках

Изобретение относится к биотехнологии и описывает новую бактериальную нуклеазу системы CRISPR-Cas9 из бактерии , а также ее применение для образования строго специфичных двунитевых разрывов в молекуле ДНК. Данная нуклеаза обладает необычными свойствами и может быть использована для изменения...
Тип: Изобретение
Номер охранного документа: 0002724470
Дата охранного документа: 23.06.2020
25.06.2020
№220.018.2abc

Способ количественного определения содержания днк в сложных растительных смесях методами массового параллельного секвенирования

Изобретение относится к области биотехнологии и описывает способ определения количественного состава двухкомпонентной или многокомпонентной смеси растений. Использование базы данных поправочных коэффициентов для растений различных видов позволяет производить количественную оценку присутствия...
Тип: Изобретение
Номер охранного документа: 0002724522
Дата охранного документа: 23.06.2020
Показаны записи 1-7 из 7.
29.12.2017
№217.015.f586

Маркирующая добавка

Изобретение может быть использовано для установления подлинности или верификации взрывчатых веществ, ценных бумаг, дорогостоящего оборудования, ювелирных изделий. Маркирующая добавка в виде частиц сферической формы содержит магнитный компонент и маркирующий компонент при следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002637334
Дата охранного документа: 04.12.2017
10.05.2018
№218.016.4099

Способ получения тонких пленок на основе углеродных наноматериалов

Изобретение относится к нанотехнологии. Сначала готовят суспензию, содержащую этиленгликоль в качестве жидкой дисперсионной среды и углеродный наноматериал, например графен, оксид графена, восстановленный оксид графена, однослойные углеродные нанотрубки, двухслойные углеродные нанотрубки,...
Тип: Изобретение
Номер охранного документа: 0002648920
Дата охранного документа: 28.03.2018
07.06.2019
№219.017.7565

Метод получения прочного и токопроводящего волокна путем вытягивания пленок из углеродных нанотрубок

Изобретение относится к нанотехнологии и может быть использовано при изготовлении специализированной одежды, умных тканей, сенсорных датчиков, легких композитных материалов, гибкой и растяжимой электроники. Сначала получают плёнку, состоящую из случайно ориентированных углеродных нанотрубок, с...
Тип: Изобретение
Номер охранного документа: 0002690821
Дата охранного документа: 05.06.2019
11.07.2019
№219.017.b2bc

Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления

Настоящее изобретение относится к полупроводниковым гибридным структурам для преобразования энергии светового излучения в электрическую энергию и может быть использовано при создании альтернативных источников энергии. Согласно изобретению предложены тонкопленочные гибридные фотоэлектрические...
Тип: Изобретение
Номер охранного документа: 0002694113
Дата охранного документа: 09.07.2019
24.12.2019
№219.017.f14d

Способ хроматографического разделения однослойных углеродных нанотрубок по хиральности

Изобретение относится к способам обработки дисперсных углеродных материалов и конкретно касается получения деагломерированных недеформированных однослойных углеродных нанотрубок для хроматографического разделения по хиральности. Способ хроматографического разделения однослойных углеродных...
Тип: Изобретение
Номер охранного документа: 0002709890
Дата охранного документа: 23.12.2019
22.04.2020
№220.018.17a3

Термоакустический излучатель

Изобретение относится к акустике, в частности к устройствам для возбуждения акустических колебаний в газах и жидкостях. Согласно первому варианту реализации термоакустический излучатель содержит слой тепловыделяющих структур в виде пленки хаотично расположенных структур углеродных нанотрубок,...
Тип: Изобретение
Номер охранного документа: 0002719279
Дата охранного документа: 17.04.2020
30.05.2023
№223.018.73c1

Способ переноса графена на полимерную подложку

Изобретение относится к области создания обработки материалов на основе 2D-структур, и в частности изобретение относится к области получения проводящих структур на основе графена на заданном носителе для электроники. Способ переноса графена на полимерную подложку включает нанесение полимерной...
Тип: Изобретение
Номер охранного документа: 0002757239
Дата охранного документа: 12.10.2021
+ добавить свой РИД