×
10.12.2019
219.017.ebdb

Способ получения цветного хромдиопсидового стекла (варианты)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSiO, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов. Зеленое хромдиопсидовое стекло получают плавлением с использованием высокочастотного нагрева минерального хромдиопсидового сырья в стеклоуглеродном тигле в инертной атмосфере с последующим перегревом расплава до температуры 1600°С, выдержкой расплава при этой температуре до его осветления и закалкой расплава выключением высокочастотного нагрева, обеспечивающим в течение до трех минут охлаждение расплава до 600°С. Синее хромдиопсидовое стекло получают плавлением с использованием высокочастотного нагрева минерального хромдиопсидового сырья в стеклоуглеродном тигле в инертной атмосфере с последующим перегревом расплава до температуры 1700°С, выдержкой расплава при этой температуре до его осветления, снижением температуры расплава до 1600°С и последующей закалкой расплава выключением высокочастотного нагрева, обеспечивающим в течение до трех минут охлаждение расплава до 600°С. Техническим результатом является получение ювелирного поделочного материала в виде прозрачных стеклообразных однородных окрашенных образцов хромдиопсида зеленого и синего цвета с сохранением свойств, присущих хромдиопсиду, для поделочных материалов. 2 н.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSi2O6, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов.

Ярко-зеленые кристаллы хромдиопсида нашли применение в ювелирных изделиях. Однако качественные кристаллы обычно имеют небольшие размеры, их величина редко превышает 7-8 см.

Основная порода минерала хромдиопсида представляет собой зеленого цвета зернисто-слоистую неоднородную массу, легко скалывающуюся по плоскостям, с белесыми примесными прожилками, которая в лучшем случае используется в качестве поделочного камня для художественных изделий.

Известно использование диопсида и его хромсодержащей разновидности в качестве окрашивающего компонента в составе шихты при получении различных цветных силикатных декоративных стекол и стеклокерамики (см., например, SU №1523542, SU №1530588, RU №2377195, RU №2465227).

О получении диопсида MgCaSi2O6 в стеклообразном состоянии хорошо известно, как и о получении стекол в во всей области составов системы MgSiO3 – CaSiO3, например, в работе L. Cormier, G.J. Cuello, Geochimica et Cosmochimica Acta, v. 122, 2013, p. 498-510 стекла получены плавкой шихты, содержащей исходные материалы (SiO, CaCO и MgO) в платино-родиевых тиглях и закалкой нижней части тигля в холодной воде.

В ювелирной области техники используется множество приемов для улучшения физических и/или эстетических свойств природных минералов, например, облучением электронным пучком, облучением ионами металлов, нейтронной бомбардировкой, термообработкорй и тому подобные. Однако, не существует известных методов обработки или улучшения качества природного хромдиопсида.

Технической проблемой, решение которой обеспечивается при осуществлении изобретения, является получение поделочного материала в виде прозрачных стеклообразных однородных окрашенных образцов хромдиопсида зеленого и синего цвета с сохранением величины показателя преломления, твердости, присущих хромдиопсиду для поделочных материалов. При этом, чтобы получить хромдиопсид в стеклообразном состоянии при отсутствии стеклообразующих добавок необходимо обеспечить высокие скорости охлаждения расплава.

В предлагаемом способе зеленое хромдиопсидовое стекло получают плавлением минерального хромдиопсидового сырья с последующим перегревом расплава до температуры 16000С в стеклоуглеродном тигле в инертной атмосфере с использованием высокочастотного нагрева, выдержкой расплава при этой температуре до его осветления и закалкой расплава выключением высокочастотного нагрева, обеспечивающей в течение до трех минут охлаждение расплава до 6000С.

Другим вариантом изобретения является получение синего хромдиопсидового стекла плавлением минерального хромдиопсидового сырья с последующим перегревом расплава до температуры 17000С в стеклоуглеродном тигле в инертной атмосфере с использованием высокочастотного нагрева, выдержкой расплава при этой температуре до его осветления, снижением температуры расплава до 16000С и последующей закалкой расплава выключением высокочастотного нагрева, обеспечивающей в течение до трех минут охлаждение расплава до 6000С.

Состав хромдиопсидового сырья влияет на температуру плавления сырья. Для чистого диопсида температура плавления от соотношения кальция к магнию изменяется в пределах 1540–15700С. Чтобы сократить время осветления расплава за счет удаления газовых примесей, расплавления тугоплавких примесных частиц, применятся небольшой перегрев расплава до 16000С - температуры, при которой расплав еще не реагирует со стенками стеклоуглеродного тигля. Кроме того, при перегреве расплав хромдиопсида становится менее вязким, что содействует более быстрому осветлению расплава.

Перегрев расплава до 17000С приводит к частичному восстановлению ионов Cr3+ до Cr2+ за счет взаимодействия шихты со стенками стеклоуглеродного тигля и в результате закалки к получению синего хромдиопсидового стекла.

Использование стеклоуглеродного тигля, гладкая поверхность которого и инертность к расплаву при температуре плавления хромдиопсида позволяет исключить прилипание стекла к тиглю.

Использование высокочастотного нагрева позволяет мгновенно отключить подачу мощности на водоохлаждаемый индуктор, что обеспечивает высокую скорость охлаждения расплава для получения стекла. Изменение температуры расплава при закалке составляет в первую минуту от 16000С до 11000С, за вторую минуту до 8000С, за третью минуту до менее 6000С. Такие скорости охлаждения расплава обеспечивают сохранение стеклообразного состояния хромдиопсида.

Исследования показали, что возможно проведение процесса без перегрева при температуре плавления, но это приводит к увеличению времени до осветления расплава и увеличению времени контакта расплава со стенками тигля.

На фиг. 1 представлены дифрактограммы: 1 – исходный хромдиопсид, 2 – аморфное хромдиопсидовое стекло (съемка под п/э пленкой, пики от нее); на фиг. 2 - ИК- спектры: 1, 3 – аморфные зеленое и синее стекла, 2 – исходный хромдиопсид; на фиг. 3 - Cr Kα рентгеновские эмиссионные спектры зеленого (1) и синего (2) хромдиопсидовых стекол.

Суть предлагаемого способа получения цветных хромдиопсидовых стекол раскрывается примерами их получения.

Пример 1. Измельченное хромдиопсидовое сырье, содержащее по результатам анализа, масс.%: Si- 21.5; Ca – 13.6; Mg – 10.2; Fe – 0.8; Al – 0.8; Na – 0.7; Cr – 0.3; C – 3.6; O – 48.5, массой 3 г загружают в стеклоуглеродный тигель диаметром 15 мм, высотой 26 мм, который помещают в кварцевом реакторе в графитовую трубку, нагреваемую высокочастотным индуктором. Подачей высокочистого аргона в реактор вытесняется воздух и создается инертная атмосфера для предотвращения выгорания графитового нагревателя и стеклоуглеродного тигля. Затем после включения высокочастотного нагрева тигель с шихтой нагревается до 7000С, равномерная подача мощности на индуктор через каждые 5 минут обеспечивает дальнейший нагрев тигля со скоростью порядка 300/мин до 16000С при которой расплав выдерживается до его осветления примерно в течение 5 мин. с последующей закалкой расплава путем выключения индукционного нагрева. После охлаждения из тигля легко извлекается прозрачное равномерно окрашенное зеленого цвета хромдиопсидовое стекло в форме плосковыпуклой линзы. Потеря массы после плавки образца не превышала 0,5%.

Пример 2. В отличие от примера 1 хром диопсид массой 3 г в процессе нагрева перегрет на 100 градусов, при 17000С наблюдалось образование газообразных пузырьков на дне тигля, которые всплывали на поверхность расплава и схлопывались, после снижения температуры расплава до 16000С образование пузырьков прекращалось и расплав закаливался выключением нагрева. После охлаждения образец извлекался и представлял собой равномерно окрашенное прозрачное синего цвета стекло также в форме плосковыпуклой линзы.

Для исследований зеленое и синее хромдиопсидовые стекла отожжены при 500-6000С для снятия напряжений. Шлифовкой и полировкой приготовлены плоско параллельные образцы для оптических и электронного строения исследований. Рентгенофазовым анализом (фиг. 1) и ИК спектрами (фиг. 2) подтверждено аморфное состояние стекол. Изменение зарядового состояния примеси хрома (фиг. 3) ответственно за изменение окраски стекла в синий цвет.


Способ получения цветного хромдиопсидового стекла (варианты)
Источник поступления информации: Роспатент

Показаны записи 1-10 из 30.
20.08.2013
№216.012.600b

Способ изготовления пеностекла

Изобретение относится к теплоизоляционным материалам, в частности пеностеклу. Технический результат изобретения заключается в расширении диапазона плотности пеностекла от 150 до 600 кг/м и в создании способа производства пеностекла, безопасного для печного оборудования и для окружающей среды....
Тип: Изобретение
Номер охранного документа: 0002490219
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6f6d

Способ выращивания кристалла методом киропулоса

Изобретение относится к выращиванию крупных кристаллов, предназначенных для использования в приборах квантовой электроники. Способ выращивания кристалла методом Киропулоса из расплава или из раствор-расплава включает рост кристалла на затравку, зафиксированную в кристаллодержателе и...
Тип: Изобретение
Номер охранного документа: 0002494176
Дата охранного документа: 27.09.2013
20.12.2013
№216.012.8e0c

Способ оценки проходимости местности вне дорог

Изобретение относится к области картографии и может быть использовано в качестве информационной базы при управлении движением различных транспортных средств и пеших групп, использовании автоматизированной системы управления войсками, планировании и проведении полевых исследований и...
Тип: Изобретение
Номер охранного документа: 0002502047
Дата охранного документа: 20.12.2013
20.02.2014
№216.012.a284

Способ выращивания кристаллов парателлурита гранной формы и устройство для его осуществления

Изобретение относится к технологии выращивания кристаллов парателлурита методом Чохральского, которые могут быть использованы при изготовлении поляризаторов в ближней ИК-области. Способ выращивания кристаллов парателлурита гранной формы из расплава включает наплавление порошка диоксида теллура...
Тип: Изобретение
Номер охранного документа: 0002507319
Дата охранного документа: 20.02.2014
10.05.2014
№216.012.c0b9

Пирометрический способ измерения распределения температуры на поверхности объекта

Изобретение относится к области оптической пирометрии и касается способа измерения распределения температуры на поверхности объекта. Способ включает формирование на выбранной частоте цифрового изображения объекта за счет испускаемого объектом теплового излучения и получение дополнительного...
Тип: Изобретение
Номер охранного документа: 0002515086
Дата охранного документа: 10.05.2014
10.09.2015
№216.013.7a7f

Гранулированный наполнитель

Изобретение относится к наполнителям, предназначенным для создания гигиенических условий при содержании домашних и лабораторных животных, например кошек, хомяков и других грызунов, в условиях вивариев и квартир. Гранулированный наполнитель туалета для животных на основе высушенного сапропеля с...
Тип: Изобретение
Номер охранного документа: 0002562948
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.81cd

Способ оценки транспортной проницаемости местности вне дорог

Изобретение относится к области картографии и может быть использовано в системах оценки транспортной проницаемости местности вне дорог при управлении перемещением соединений оперативного масштаба - смешанных колонн автотранспорта повышенной проходимости и транспорта на гусеничном ходу (колонных...
Тип: Изобретение
Номер охранного документа: 0002564826
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8376

Гранулированный почвогрунт для аквариумов

Изобретение относится к аквариумистике. Гранулированный почвогрунт, предназначенный для создания благоприятной среды для развития водных растений и рыб в аквариумах, изготовлен на основе предварительно промороженного и высушенного до влажности не более 5% органического сапропеля с зольностью не...
Тип: Изобретение
Номер охранного документа: 0002565257
Дата охранного документа: 20.10.2015
10.03.2016
№216.014.c0b4

Монокристаллический материал srmgf и способ его получения

Изобретение относится к области получения сегнетоэлектрических монокристаллов фторидов, применяемых в нелинейной оптике. Получен монокристаллический материал фторида SrMgF, обладающий способностью к преобразованию лазерного излучения в ВУФ/УФ области спектра от длины волны 0,122 мкм до 11,8...
Тип: Изобретение
Номер охранного документа: 0002576638
Дата охранного документа: 10.03.2016
12.01.2017
№217.015.6141

Способ выращивания монокристалла метафторидобората бария-натрия bana (bo)f

Изобретение относится к технологии выращивания монокристаллов метафторидобората бария-натрия BaNa(ВО)F для использования в терагерцовой области спектра в диапазоне от 0,3 ТГц до 1 ТГц в качестве волновых пластин, поляризаторов, а также в воздушной терагерцовой фотонике. Монокристалл BaNa(ВО)F...
Тип: Изобретение
Номер охранного документа: 0002591156
Дата охранного документа: 10.07.2016
Показаны записи 1-10 из 24.
27.09.2013
№216.012.6f6d

Способ выращивания кристалла методом киропулоса

Изобретение относится к выращиванию крупных кристаллов, предназначенных для использования в приборах квантовой электроники. Способ выращивания кристалла методом Киропулоса из расплава или из раствор-расплава включает рост кристалла на затравку, зафиксированную в кристаллодержателе и...
Тип: Изобретение
Номер охранного документа: 0002494176
Дата охранного документа: 27.09.2013
20.02.2014
№216.012.a284

Способ выращивания кристаллов парателлурита гранной формы и устройство для его осуществления

Изобретение относится к технологии выращивания кристаллов парателлурита методом Чохральского, которые могут быть использованы при изготовлении поляризаторов в ближней ИК-области. Способ выращивания кристаллов парателлурита гранной формы из расплава включает наплавление порошка диоксида теллура...
Тип: Изобретение
Номер охранного документа: 0002507319
Дата охранного документа: 20.02.2014
10.03.2015
№216.013.3092

Способ получения карбида хрома

Изобретение может быть использовано при изготовлении режущего инструмента, при износостойкой наплавке, для получения композиционных электрохимических покрытий и контактного материала, обладающего повышенным сопротивлением эрозионному действию электрической дуги. Способ получения карбида хрома...
Тип: Изобретение
Номер охранного документа: 0002543902
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.33c8

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение относится к способу извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК). Способ включает использование анионита фосфатно-смешанной формы в циклическом процессе сорбции-десорбции. При этом десорбцию во всех, кроме последней, стадях-циклах, ведут до...
Тип: Изобретение
Номер охранного документа: 0002544731
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.361d

Способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты

Изобретение может быть использовано в химической промышленности. Способ извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК) включает пропускание исходной ЭФК через колонну с сорбентом при температуре 20-85°C и последующее пропускание десорбирующего раствора. В...
Тип: Изобретение
Номер охранного документа: 0002545337
Дата охранного документа: 27.03.2015
27.04.2015
№216.013.4610

Способ получения диборида хрома

Изобретение относится к способу получения диборида хрома, состоящему в нагреве шихты из смеси окиси хрома, карбида бора и высокодисперсного углеродного материала. При этом нагрев шихты осуществляют при температуре 1400…1600°C и времени 20…25 минут, частицы карбида бора имеют размер не более 1...
Тип: Изобретение
Номер охранного документа: 0002549440
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4b86

Способ получения карбида бора

Изобретение относится к химической промышленности и может быть использовано при финишной металлообработке, для производства керамической брони, при износостойкой наплавке. Шихту из смеси аморфного бора и высокодисперсного углеродного материала нагревают до 1700-1800°C в течение 15-20 минут. В...
Тип: Изобретение
Номер охранного документа: 0002550848
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6d14

Способ получения диборида титана

Изобретение относится к порошковой металлургии, в частности к синтезу диборида титана, и может быть использовано для производства керамической брони, изготовления нагревателей высокотемпературных электропечей сопротивления, ванн и тиглей - испарителей металлов, деталей металлопроводов и...
Тип: Изобретение
Номер охранного документа: 0002559482
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d17

Способ получения диборида циркония

Изобретение относится к порошковой металлургии, в частности к синтезу диборида циркония, и может быть использовано для изготовления чехлов высокотемпературных термопар, нагревателей высокотемпературных электропечей сопротивления, испарителей и лодочек для вакуумной металлизации, тиглей для...
Тип: Изобретение
Номер охранного документа: 0002559485
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.7722

Способ получения карбида ванадия

Изобретение относится к химической промышленности и порошковой металлургии и может быть использовано при изготовлении спеченных твердых сплавов и катализаторов. Карбид ванадия получают нагревом смеси оксида ванадия VO и нановолокнистого углерода с удельной поверхностью 138-160 м/г в токе...
Тип: Изобретение
Номер охранного документа: 0002599757
Дата охранного документа: 10.10.2016
+ добавить свой РИД