×
27.11.2019
219.017.e6eb

Результат интеллектуальной деятельности: Способ переработки бокситов

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С. Предложенный способ обеспечивает извлечение оксида алюминия в раствор, равное 94%, из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера. Кроме того, способ позволяет получать алюминатные растворы с низким содержанием кремния и железа. 2 пр.

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов по схеме Байера.

Известен способ получения глинозема из боксита, включающий смешение боксита с щелочно-алюминатным раствором, выщелачивание боксита в автоклавах при температуре 140-250°С в течение 1-2 ч с получением алюминатного раствора с концентрацией щелочи 150-200 г/л Na2Ok и каустическим модулем в конечном алюминатном растворе на 0,03-0,10 единиц выше его равновесного уровня в принятых условиях выщелачивания, отделение шлама от алюминатного раствора, разложение алюминатного раствора с получением гидроксида алюминия и маточного раствора, при этом щелочно-алюминатный раствор получают упариванием маточного раствора, смешением шлама, полученного после выщелачивания боксита в автоклавах с упаренным маточным раствором с концентрацией щелочи 160-260 г/л Na2Ok и каустическим модулем 2,6-3,2, выдержку при температуре 98-110°С, отделением шлама от алюминатного раствора. Степень извлечения глинозема составляет 92,5% (Патент RU 2226174, МПК C01F 7/06, 2004 год).

Недостатком известного способа является наличие технологической операции, связанной с приготовлением пульты из маточного раствора и шлама и ее выщелачиванием, что усложняет технологический процесс производства и требует установки дополнительного бакового оборудования.

Известен способ получения оксида алюминия из средне- и низкосортного боксита, который включает добавление в боксит оборотного маточного раствора и деалюминированного остатка, содержащего трехкальциевый гидроалюминат и кремнезем, полученного путем разделения суспензии после переработки красного шлама с добавлением в нее извести, автоклавное выщелачивание по способу Байера с получением суспензии, которую разделяют с получением раствора алюмината натрия и красного шлама, раствор алюмината натрия далее перерабатывают с получением маточного раствора и оксида алюминия (патент RU 2478574, МПК C01F 7/06, 2011 год).

Недостатком известного способа является необходимость введения в технологию отдельного передела по производству трехкальциевого гидроалюмината, который используют в качестве добавки при выщелачивании. Кроме того, способ обеспечивает относительно невысокую степень выщелачивания (не более 80%).

Наиболее близким по технической сущности является способ получения глинозема из бокситов, включающий добавление к бокситу оборотного раствора процесса Байера и извести, предварительно обожженной при температуре 1400 – 1500°С, автоклавное выщелачивание в две стадии: сначала при температуре 90-95°С, а затем при температуре 220°С, с последующим разбавлением и перемешиванием полученной пульпы при температуре 98-100оС. Способ обеспечивает извлечение оксида алюминия до 92% (Бибанаева С.А., Сабирзянов Н.А., Корюков В.Н., Уфимцев В.М., Абакумов С.А. “Технология получение извести и использование ее при производстве глинозема”, “Естественные и технические науки”, № 5, 2014)(прототип).

Однако известный способ обеспечивает возможность переработки на глинозем с высокой степенью извлечения только хорошо вскрывающихся бокситов гиббситового или гиббсит-бемитового типа, к которым в частности относятся бокситы Тиманского месторождения. При переработки известным способом на глинозем трудно вскрываемых бокситов степень извлечения составляет не более 92%.

Таким образом, перед авторами стояла задача разработать способ переработки, трудно вскрываемых бокситов диаспор или диаспор-бемитового типа обеспечивающим высокую степень извлечения оксида алюминия.

Поставленная задача решена в предлагаемом способе переработки бокситов, включающем добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание, с отделением алюминатного раствора после выщелачивания, в котором обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С.

В настоящее время из патентной и научно-технической литературы не известен способ переработки бокситов с извлечением оксида алюминия с использованием обожженной при 1200-1300°С извести в количестве 12-14 масс.% от массы боксита и проведении стадии выщелачивания в предлагаемых авторами условиях.

В настоящее время производство глинозема (оксида алюминия) осуществляется преимущественно из бокситов гиббситового или гиббсит-бемитового типа. Однако в РФ основные запасы бокситов, находящиеся на Урале, относятся к трудно вскрываемым бокситам диаспорового или диаспор-бемитового типа. Таким образом, является актуальной задача разработки способа извлечения оксида алюминия из бокситов этого типа с обеспечением высокого процента извлечения. Проведенные авторами исследования позволили определить условия и параметры проведения технологического процесса, обеспечивающего высокое извлечение оксида алюминия (до 94%). Использование извести, обожженной при температуре 1200-1300°С, объясняется изменением химических свойств извести (оксида кальция) под влиянием высоких температур. При температурах обжига выше 1300°С происходит изменение параметров кристаллической решетки в сторону уменьшения, в результате чего повышается прочность кристаллической решетки и снижается реакционная способность оксида кальция. Предлагаемый авторами температурный интервал предварительного обжига извести является оптимальным, обеспечивая максимальную реакционную способность извести для активации процесса вскрытия трудно вскрываемых бокситов. При использовании извести, обожженной ниже 1200°С, в количестве менее 12 масс.% от массы боксита степень выщелачивания не превышала 87%, при использовании извести, обожженной выше 1300°С, в количестве более 14 масс.% от массы боксита степень выщелачивания не превышала 88%. Существенными являются параметры проведения процесса выщелачивания, обеспечивающие разложения и перевода в раствор максимально возможного количества оксида алюминия. Выщелачивание осуществляли при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 МПа и температуре 230-235°С. Жесткие условия процесса обусловлены минералогическим составом бокситов диаспорового или диаспор-бемитового типа, который осложняет вскрытие сырья по сравнению с другими глиноземсодержащими минералами. Так, при снижении соотношения жидкое : твердое, менее 3.0:1, снижении давления ниже 30атм и температуры ниже 230 степень извлечения оксида алюминия в раствор снижается до 86-87%, при повышении соотношения жидкое : твердое, более 3.5:1, при повышении давления выше 32атм и температур выше 235° степень извлечения оксида алюминия в раствор также снижается до 88%. Предлагаемый способ позволяет упростить технологический процесс, поскольку позволяет исключить дополнительное предварительное низкотемпературное выщелачивание.

Предлагаемый способ может быть осуществлен следующим образом. Осуществляют автоклавное выщелачивание “сырой” пульпы, полученной путем добавления в боксит, в частности в боксит Северо-уральского месторождения, оборотного раствора и обожженной при температуре 1200-1300°С извести в количестве 12-14 масс.% от массы боксита. Выщелачивание осуществляют при соотношении жидкое : твердое, равном 3.0÷3.5:1, давлении 30-32 атм и температуре 230-235°С, в течение 2-2,5 часов. Затем отключают нагрев, охлаждают автоклав до комнатной температуры и открывают. Полученный продукт фильтруют. Алюминатный раствор помещают в отдельную емкость. Проводят химический анализ алюминатного раствора с целью определения содержания алюминия, натрия, кремния и железа. Определяют извлечение оксида алюминия в раствор. Определяют извлечение по формуле: Вхим= 1- (Ашл*Feб/ Аб *Feшл)*100, где Аб и Fб - содержание Al2O3 и Fe2O3 в боксите, % и Ашл и Fшл - содержание Al2O3 и Fe2O3 в шламе, %. Кремневый модуль определяют по формуле: µSi= Al2O3/ SiO2, где Al2O3 и SiO2 –содержание алюминия и кремния в алюминатном растворе, г/л.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Масса навески 15 г. Берут 13,2 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 1,8г (12% масс.) отожженной при температуре 1200°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 30атм, включают нагрев до температуры 230°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028, кремневый модуль – 528, степень выщелачивания составила 94%.

Пример 2. Масса навески 15 г. Берут 12,9 г боксита Северо-уральского месторождения состава, масс.%: Al2O3 – 52,4; CO2 – 4,87; SiO2 – 3,45; Fe2O3 – 21,3; TiO2 – 1,98; MnO – 0,12; CaO – 4,48; MgO – 0,38; Sобщ. – 0,74, потери при прокаливании – 15,52, кремневый модуль- 15,198. Добавляют 2,1 г (14% масс.) отожженной при температуре 1300°C извести состава, масс.%: СаО − 90,54; SiO2 − 0,36; Al2O3 − 1,9; Fe2O3 − 0,7; MgO – 1,5, потери при прокаливании − 5. Полученную смесь помещают в автоклав и добавляют 50 мл оборотного раствора состава, г/л: Al2O3 – 149,6; Na2Oобщ. – 320,85; SiO2 – 1,12, кремневый модуль- 133; после чего тщательно перемешивают. Автоклав закрывают, устанавливают в термостат, устанавливают давление 32атм, включают нагрев до температуры 235°С и выдерживают в течение 2 часов. После чего выключают термостат, охлаждают, открывают и полученный продукт фильтруют на вакуумной установке. При этом нижний продукт (алюминатный раствор) отбирают в отдельную емкость. По данным химического анализа получают алюминатный раствор, содержащий (г/л.): Al2O3 – 132, SiO2 – 0,25, Na2Oобщ – 152, Fe2O3 –0,0028 , кремневый модуль – 528, степень выщелачивания составила 94%.

Таким образом, авторами предлагается простой, эффективный способ извлечения оксида алюминия в раствор из трудно вскрываемых бокситов диаспорового и диаспор-бемитового типа в процессе Байера, обеспечивающий высокое извлечение равное 94%, высокий кремневый модуль и низкое содержание железа в алюминатном растворе.

Способ переработки бокситов, включающий добавление к бокситу оборотного раствора с одновременным введением обожженной при высокой температуре извести, последующее автоклавное выщелачивание с отделением алюминатного раствора после выщелачивания, отличающийся тем, что обожженную при 1200-1300°С известь вводят в количестве 12-14 масс.% от массы боксита, а выщелачивание осуществляют при соотношении жидкое : твердое, равном 3,0-3,5:1, давлении 30-32 атм и температуре 230-235°С.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 99.
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
Показаны записи 11-11 из 11.
08.08.2020
№220.018.3e11

Средство для лечения пародонтита и способ лечения пародонтита

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано в терапии при лечении воспалительных заболеваний пародонта. Предлагаемое средство для лечения пародонтита содержит кремнийорганический глицерогидрогель, гидроксиапатит и активную добавку, причем в...
Тип: Изобретение
Номер охранного документа: 0002729428
Дата охранного документа: 06.08.2020
+ добавить свой РИД