×
22.11.2019
219.017.e4f4

ЛЕТАТЕЛЬНЫЙ АППАРАТ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к самолетам, выполненным по аэродинамической схеме «летающее крыло». Летательный аппарат содержит воздухозаборное устройство, расположенную в крыле силовую установку, систему управления вектором тяги реактивных двигателей силовой установки, системы управления и стабилизации полета. Воздухозаборное устройство установлено с возможностью поворота относительно продольной оси крыла в плоскости его строительной горизонтали на угол α в диапазоне от 0° до 90°. Система управления выполнена с возможностью изменения направления вектора тяги в плоскости строительной горизонтали на угол β=α в направлении, противоположном направлению поворота воздухозаборного устройства. Изобретение направлено на улучшение аэродинамического качества на всех режимах полета и уменьшение радиолокационной заметности летательного аппарата. 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к самолетам, выполненным по аэродинамической схеме «летающее крыло» и может быть использовано при создании беспилотных и пилотируемых летательных аппаратов, предназначенных для решения широкого круга задач: гражданских (перевозка грузов, пассажиров) и военных (разведывательных, ударных, требующих обеспечения малозаметности), сочетающих удовлетворительные летно-технические характеристики на дозвуковых и сверхзвуковых скоростях.

Известное техническое противоречие между требованиями к дозвуковому и сверхзвуковому режимам полета летательных аппаратов, выполненных по аэродинамической схеме «летающее крыло», конструктивно решается следующим образом.

Известен летательный аппарат, содержащий крыло-фюзеляж, реактивные двигатели, вертикальное и горизонтальное оперение [1]. Техническим результатом, на достижение которого направлено указанное техническое решение, является повышение взлетно-посадочных характеристик. Технический результат достигается посредством разворота в полете крыла-фюзеляжа на 90° в направлении взлета (посадки) за счет того, что двигатели и оперение установлены с возможностью вращения в горизонтальной плоскости, а крыло-фюзеляж выполнено таким образом, что при любом направлении движения сечение его вертикальной плоскостью, параллельной направлению движения, дает профиль, создающий подъемную силу.

Недостатками известного решения является малая эффективность горизонтального и вертикального оперения, обуславливающая неудовлетворительные характеристики устойчивости и управляемости на всех режимах полета, и наличие конструктивных элементов в виде мотогондол для размещения двигателей и оперения, уменьшающих аэродинамическое качество за счет сопротивления и увеличивающих эффективную поверхность рассеяния, т.е. повышающих радиолокационную заметность.

Наиболее близким к предлагаемому техническому решению по совпадающим признакам является «Сверхзвуковое летающее крыло» [2], представляющее из себя крыло, создающее подъемную силу при любом направлении полета. При этом для движения на малых скоростях крыло выполнено с большим удлинением, малым углом стреловидности и соответствующим профилем. В поперечном направлении, по оси, перпендикулярной оси направления полета на малых скоростях, крыло выполнено с малым удлинением, большим углом стреловидности и, соответственно, с более тонким профилем для полета на сверхзвуковых скоростях.

Указанная концепция, идея которой заключается в том, что весь летательный аппарат при переходе от дозвукового полета к сверхзвуковому и обратно разворачивается на 90 градусов, получила в технической и патентной литературе устойчивое название «сверхзвуковое двунаправленное летающее крыло» (Supersonic Bi-directional Flying Wing), что в последующем описании изобретения допускает возможность использования данного термина.

Для обеспечения разворота двунаправленного крыла прототипа при переходе от одного режима полета (дозвукового) к другому (сверхзвуковому) и обратно, крыло оснащено поворотной платформой, на которой закреплена силовая установка. Управление и стабилизацию на всех режимах полета по крену, тангажу и рысканию обеспечивает механизация крыла аэродинамическими поверхностями. Стабилизация полета на малых скоростях дополнительно обеспечивается установленными шарнирно на концах крыла с большим удлинением отклоняемыми законцовками, которые на малых скоростях занимают вертикальное положение, а при повороте крыла в режим сверхзвукового полета перемещаются в горизонтальное положение, трансформируясь в продолжение крыла с большим удлинением. Описанием к патенту предусмотрена возможность установки на поворотную платформу вместе с силовой установкой вертикальных стабилизаторов, предназначенных для управления и стабилизации полета по курсу на всех режимах полета. Так же описанием к патенту предусмотрена возможность установки на крыле-фюзеляже более одной поворотной платформы с одним или несколькими двигателями и одним или несколькими вертикальными стабилизаторами. Поворотные платформы с двигателями и стабилизаторами могут быть установлены сверху крыла-фюзеляжа, снизу, или сверху и снизу, а также с возможностью перемещения по поверхности крыла.

Прототипу присущи недостатки аналога, а именно наличие мотогондол и управляющих поверхностей в виде стабилизаторов, ухудшающих аэродинамическое качество и увеличивающих поверхность рассеяния.

Технический результат достигается тем, что в летательном аппарате, выполненном по аэродинамической схеме «двунаправленное летающее крыло», содержащем воздухозаборное устройство, расположенную в крыле силовую установку, систему управления вектором тяги, системы управления и стабилизации полета, воздухозаборное устройство установлено с возможностью поворота относительно продольной оси крыла в плоскости строительной горизонтали летательного аппарата на угол α в диапазоне от 0° до 90°, а система управления вектором тяги выполнена с возможностью изменения направления вектора тяги в плоскости строительной горизонтали на угол β=α в направлении, противоположенном направлению поворота воздухозаборного устройства.

Сущность изобретения заключается в том, что летательный аппарат, выполненный по схеме «двунаправленное летающее крыло», оснащен поворотным воздухозаборным устройством и системой изменения направления вектора тяги двигателей в плоскости строительной горизонтали летательного аппарата и поясняется чертежами, где

на фиг. 1 представлена схема летательного аппарата в варианте силовой установки с двумя двигателями;

на фиг. 2 - схема летательного аппарата в плоскости строительной горизонтали;

на фиг. 3а - общие виды летательного аппарата при полете в диапазоне малых скоростей (в режиме взлета - посадки);

на фиг. 3б - схема летательного аппарата в плоскости строительной горизонтали при полете в диапазоне малых скоростей;

на фиг. 4а - общие виды летательного аппарата в диапазоне сверхзвуковых скоростей;

на фиг. 4б - схема летательного аппарата в плоскости строительной горизонтали при полете в диапазоне сверхзвуковых скоростей;

на фиг. 5а - общие виды летательного аппарата при переходном режиме движения (от дозвуковых скоростей к сверхзвуковым и обратно);

на фиг. 5б - схема летательного аппарата в плане при переходном режиме движения;

на фиг. 6 представлен вариант технического решения устройства газодинамического управления летательным аппаратом. На чертежах обозначено:

1. Двунаправленное крыло летательного аппарата;

2. Двигатели силовой установки летательного аппарата;

3. Воздухозаборное устройство;

4. Реактивные сопла;

5. Система управления вектором тяги силовой установки;

6. Поворотная заслонка системы управления вектором тяги;

7. Аэродинамические поверхности управления и стабилизации полета;

8. Система струйного управления и стабилизации полета;

9. Система газодинамического управления;

10. Регулируемая створка системы газодинамического управления;

11. Выдвижные створки.

Сплошными жирными стрелками обозначено направление движения летательного аппарата; сплошными тонкими стрелками - направление движения воздуха и выхлопных газов в газовых трактах воздухозаборного устройства 3, двигателей 2, системы управления вектором тяги 5; штриховой тонкой стрелкой - направление перемещения выдвижных створок 11; фигурными стрелками - направление тяги от реактивных сопел 4.

Летательный аппарат содержит:

- двунаправленное летающее крыло 1, являющееся одновременно фюзеляжем летательного аппарата;

- расположенную в крыле силовую установку, состоящую из одного или более реактивных двигателей 2;

- воздухозаборное устройство 3, установленное с возможностью поворота относительно продольной оси в плоскости строительной горизонтали летательного аппарата на угол α в диапазоне от 0° до 90°. Воздухозаборное устройство может быть оснащено необходимыми средствами механизации для изменения расхода воздуха при разных режимах полета (на чертежах не показано);

- систему управления вектором тяги 5 с поворотной заслонкой 6, выполненную с возможностью изменения направления вектора тяги двигателей 2 в плоскости строительной горизонтали летательного аппарата на угол β=α в направлении, противоположенном повороту воздухозаборного устройства 3. Система управления вектором тяги включает в себя также реактивное сопло 4.1 и расположенные перпендикулярно ему в плоскости строительной горизонтали летательного аппарата и параллельно друг другу реактивные сопла 4.2 и 4.3. При этом газы для организации тяги через сопло 4.3 могут отбираться как показано на чертежах из газового тракта сопла 4.2, или из системы 5 управления вектором тяги, или непосредственно за камерами сгорания или от компрессоров двигателей 2. Величина тяги Рвзл.2 регулируется изменением расхода рабочего тела, обеспечиваемого изменением площади сечения газового тракта реактивного сопла 4.3;

- систему аэродинамического управления и стабилизации летательного аппарата, включающую механизацию крыла в виде управляющих аэродинамических поверхностей 7.1, 7.2, 7.3 по задним для каждого взаимоперпендикулярного направления полета кромкам крыла 1;

- систему струйного управления и стабилизации полета 8 посредством струйных рулей (на чертежах выделенными позициями не обозначены). Воздух или газ для струйных рулей может отбираться от компрессоров или за турбинами двигателей 2, или от специальных газогенераторов (на чертежах не показаны). Стабилизирующие и управляющие моменты создаются путем дифференциального изменения площадей сечений реактивных сопел струйных рулей, обеспечивающего соответствующее изменение расхода рабочего тела;

- систему газодинамического управления 9,1, 9.2, 9.3, включающую регулируемые створки 10;

- выдвижные створки 11,1, 11.2, 11.3, выполненные без нарушения геометрической целостности аэродинамических обводов крыла 1 в выдвинутом положении.

Летательный аппарат работает следующим образом.

Взлет, посадка, движение на дозвуковых скоростях (фиг. 3а, 3б) осуществляется при конфигурации двунаправленного крыла 1 летательного аппарата, когда воздухозаборное устройство 3 находится в положении «В», а поворотная заслонка 6 системы управления вектором тяги 5 в положении «А». Тяга РВзл.1+Рвзл.2 обеспечивается через реактивные сопла 4.2 и 4.3. Ниша незадействованного в создании тяги сопла 4.1 закрыта выдвижной створкой 11.1. При этом двунаправленное крыло 1 имеет максимальное удлинение, минимальную стреловидность и максимальную относительную толщину профиля, то есть максимальную подъемную силу.

Крейсерский полет на сверхзвуковых скоростях осуществляется в конфигурации крыла 1 (фиг. 4а, 4б), когда воздухозаборное устройство 3 находится в положении «Г», а поворотная заслонка 6 в положении «Б». Тяга Ркр. обеспечивается через реактивное сопло 4.1. Ниша незадействованных в создании тяги сопел 4.2 и 4.3 закрыты выдвижными створкам 11.2 и 11.3. При этом двунаправленное крыло 1 имеет минимальное удлинение, максимальную стреловидность и минимальную относительную толщину профиля, то есть минимальное лобовое сопротивление.

В переходном режиме движения (от дозвуковых скоростей к сверхзвуковым) воздухозаборное устройство 3 двунаправленного крыла 1 поворачивается в плоскости строительной горизонтали летательного аппарата относительно его продольной оси из положения «В» в положение «Г» (фиг. 1, 2, 5а, 5б). Одновременно поворотная заслонка 6 системы управления вектором тяги 5 поворачивается из положения «А» в положение «Б». Согласование поворота воздухозаборного устройства 3 и поворотной заслонки 6 осуществляется в автоматическом режиме и обеспечивается бортовыми компьютерами (на чертежах не показано). Это позволяет создать суммарную составляющую векторов тяги (Ркр., Рвзл.1 и Рвзл.2 от реактивных сопел 4.1, 4.2 и 4.3) Рпер., направленную противоположено направлению воздухозаборного устройства 3 и отклоненную в каждый момент переходного режима движения от продольной оси летательного аппарата на угол β, равный угу а поворота воздухозаборного устройства 3, что обеспечивает движение летательного аппарата в переходном режиме полета. При переходе от сверхзвуковых скоростей к дозвуковым воздухозаборное устройство 3 поворачивается из положения «Г» в положение «В» и поворотная заслонка 8 соответственно - из положения «Б» в положение «А».

Управление и стабилизация полета на разных режимах полета осуществляется согласованно системами аэродинамического управления 7.1, 7.2, и 7.3, газодинамического управления 9.1, 9.2 и 9.3 и струйного управления 8.

Поворотное в плоскости строительной горизонтали заявляемого летательного аппарата воздухозаборное устройство 3 функционально является обратным аналогом выходных устройств двигателей самолетов вертикального взлета и посадки и конструктивно может быть выполнено, например, аналогично поворотным в вертикальной плоскости соплам турбовентиляторного двигателя Rolls Royce Pegasus, устанавливаемого на всех модификациях самолета Harrier [3]. То есть конструкция поворотного воздухозаборного устройства 3 реализуется посредством общеизвестных технических средств. Средства механизации воздухозаборных устройств (изменения внутренней геометрии в зависимости от условий полета) для изменения расхода воздуха так же общеизвестны [4] и применяются в ряде конструкций известных самолетов (например Boeing Х-32 Direct-Lift Break, США).

Система изменения направления вектора тяги 5 двигателей 2 в плоскости строительной горизонтали летательного аппарата может быть выполнена аналогично известным устройствам для изменения направления тяги в вертикальной плоскости в конструкциях двигателей летательных аппаратов вертикального взлета-посадки [5] и используемых в конструкциях экспериментальных и серийных самолетов, таких как Як-38, Як-141, Hawker Siddeley Harrier, Harrier AV-8A, SLockheed Martin F-35 Lightning II [6]. Устройство изменения направления тяги с использованием поворотной заслонки 6, аналогичное представленному на чертежах предлагаемого изобретения, реализовано для перераспределения струи выхлопных газов между параллельно установленными выхлопными патрубками силовой установки летательного аппарата [7]. Таким образом, система изменения направления вектора тяги заявляемого летательного аппарата в плоскости строительной горизонтали реализуется использованием общеизвестных технических средств.

Газодинамическое управление траекторией движения летательного аппарата осуществляется отклонением реактивной струи, например, с помощью газовых рулей - поворотных пластин, установленных на выходе из сопла. Представленное на фиг. 6 решение является одной из известных схем управлением вектором тяги с плоским соплом, его особенность состоит в том, что отклонение струи происходит одной регулируемой створкой 10, к которой струя прилипает за счет «эффекта Коанда» [8]. Подобные устройства хорошо исследованы, в том числе отечественными [9] и зарубежными [10] специалистами, реализованы в проектах перспективных самолетов (МиГ-ХХ, Су-Т6ВМ), отработаны на экспериментальных (Су-27ПС) и серийных (F-22 Raptor, Lockheed F-117 Night Hawk) самодлетов [11]. Таким образом, принципиальная возможность газодинамического управления и стабилизации полета заявляемого летательного аппарата обеспечены общеизвестными техническими средствами.

Возможность стабилизации и управления полетом летательного аппарата по курсу, тангажу и крену посредством использования системы струйного управления 8 так же обеспечивается общеизвестными техническими решениями [12], реализованными на экспериментальных (Як-141, North American Х-15) и серийных (Як-38, Harrier AV-8A) самолетах.

Возможность стабилизации и управления полетом летательного аппарата аэродинамическими методами с использованием управляющих аэродинамических поверхностей 7.1, 7.2, 7.3 - элеронов, элевонов, интерцепторов, закрылков, спойлеров и пр. [13], в том числе без использования вертикальных стабилизаторов (экспериментальные самолеты Boeing Х-36, серийные изделия Northrop В-2 Spirit) так же обеспечена общеизвестными техническими средствами.

Двунаправленное крыло-фюзеляж может быть выполнено асимметричным, как представлено на чертежах предлагаемого изобретения, так и симметричным - аналогично техническим решениям аналога и прототипа. Вопросы управления и стабилизации ассиметричными самолетами решены и реализованы в летающих конструкциях, например таких, как Supermarine S.6A (Великобритания, 1929 г.) [14]; Blohm & Voss BV 141 (Германия, 1938 г. ) [15]; Rutan Model 202 Boomerang (США, 1996 г.) [16].

Следует отметить, что любой неоднодвигательный самолет в режиме аварийного полета или посадки с одним или несколькими неработающими двигателями является асимметричным и поддерживает удовлетворительную управляемость, достаточную для достижения посадочной полосы и совершения посадки.

Вопросы управляемости самолета с несимметрично расположенным по отношению к направлению полета крылом и в режиме перехода крыла из симметричного положения в несимметричное реализованы в летающей модели беспилотного летательного аппарата Oblique Wing Research Aircraft (OWRA RPW, США, 1970 г. ), в экспериментальном пилотируемом самолете Ames Dryden-1 (AD-1, США, 1982 г., реализация технического решения по пат. США №3971535 [17]) [18].

Таким образом, управляемость и стабилизация полета предложенного летательного аппарата обеспечены общеизвестными техническими средствами и могут быть реализованы как каждым по отдельности, так и комплексом представленных средств. Современные цифровые системы согласования действия устройств управления и стабилизации также общеизвестны и осуществлены в приведенных выше конструкциях самолетов.

Совокупность отличительных признаков предлагаемого изобретения (установка воздухозаборного устройства и системы управления вектором тяги с возможностью согласованного поворота воздухозаборного устройства и изменения направления вектора тяги относительно продольной оси в плоскости строительной горизонтали летательного аппарата) обеспечивает возможность исключения из конструкции летательного аппарата, выполненного по аэродинамической схеме «двунаправленное летающее крыло» конструктивных элементов, не участвующих в создании подъемной силы и увеличивающих эффективную поверхность рассеяния.

Таким образом, использование предлагаемого технического решения обеспечивает улучшение аэродинамического качества «двунаправленного летающего крыла» на дозвуковых и сверхзвуковых режимах полета и уменьшение радиолокационной заметности.

Источники информации

1. Летательный аппарат. Заявка на выдачу авторского свидетельства СССР №2787386/23 (087629) от 14.06.1979 г., М. Кл.3 В64С 3/40.

2. Сверхзвуковое летающее крыло. Патент США 20120037751 А1, 2012 г.

3. Rolls Royce Pegasus. Авиационная энциклопедия «Уголок неба». URL: http://airwar.ru/enc/engines/pegasus.html. Дата обращения 01.06.2018.

4. Кравченко И.В., Христофоров И.Л. Силовые установки летательных аппаратов. Издательство МАИ, 2003.

5. В.Ф. Павленко. Силовые установки летательных аппаратов вертикального взлета и посадки. М.: Машиностроение, 1972.

6. Перехватчик с вертикальным взлетом Як-141. Армии и Солдаты. Военная энциклопедия / Авиация / Военная авиация в период с 1961 по 1990 г. URL: http://armedman.ru/samoletyi/1961-1990-samoletyi/perehvatchik-s-vertikalnyim-vzletom-yak-141.html. Дата обращения 30.05.2018.

7. Выходное устройство авиационного двигателя и группы авиационных двигателей силовой установки (варианты). Патент РФ №2641341 МПК B64D 33/04, F02K 1/11, Опубликовано: 17.01.2018. Бюл. №2).

8. П. Булат. На пути к пятому и шестому поколению. Часть V. Пламенный мотор для 5-го поколения. URL: http://otvaga2004.ru/kaleydoskop/kaleydoskop-air/5-6-pokoleniye-5/. Дата обращения 15.05.2018.

9. В.Т. Калугин. Аэрогазодинамика органов управления полетом летательных аппаратов. Издательство МГТУ им. Н.Э. Баумана. С 688, 2004.

10. Sedwick Т.A. Investigation of Non-Symmetric Two-Dimensional Nozzle Installed in Twin-Engine Tactical AircraftV/AIAA Paper №75-1319.1975.

11. Реактивное сопло в авиации. URL: http://avia-simply.ru/reaktivnoe-soplo-v-aviacii/. Дата обращения 02.05.2018.

12. Проектирование самолета. URL: http://www.taginvest.ru/ samolet/50.pl. Дата обращения 08.05.2018.

13. Г.И. Житомирский. Конструкция самолетов. М.: Машиностроение, 416 с. 1995.

14. В.А. Бакурский. Самые быстрые самолеты или гонка за призраком скорости. Москва, ИЛБИ, 218 с. 2000.

15. На кривой кобыле: асимметричный самолет.URL: https://www. popmech.ru/weapon/10528-na-krivoy-kobyle-asimmetrichnyy-samolet/. Дата обращения 17.05.2018.

16. Burt Rutan 202 Boomerang. URL: https://gunm.ru/burt-rutan-202-boomerang/. Дата обращения 30.05.2018.

17. Сверхзвуковой самолет с наклонным крылом. Патент США 3971535 А, 1976.

18. Самолеты с поворотным крылом. URL: https://www.popmech.ru/ weapon/15340-s-krylom-napereves/. Дата обращения 17.05.2018.

Летательный аппарат, выполненный по аэродинамической схеме «двунаправленное летающее крыло», содержащий воздухозаборное устройство, расположенную в крыле силовую установку, систему управления вектором тяги, системы управления и стабилизации полета, отличающийся тем, что воздухозаборное устройство установлено с возможностью поворота относительно продольной оси крыла в плоскости его строительной горизонтали на угол α в диапазоне от 0° до 90°, а система управления вектором тяги выполнена с возможностью изменения направления вектора тяги в плоскости строительной горизонтали на угол β=α в направлении, противоположном направлению поворота воздухозаборного устройства.
ЛЕТАТЕЛЬНЫЙ АППАРАТ
ЛЕТАТЕЛЬНЫЙ АППАРАТ
ЛЕТАТЕЛЬНЫЙ АППАРАТ
ЛЕТАТЕЛЬНЫЙ АППАРАТ
ЛЕТАТЕЛЬНЫЙ АППАРАТ
ЛЕТАТЕЛЬНЫЙ АППАРАТ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 244.
25.08.2017
№217.015.9bc8

Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение...
Тип: Изобретение
Номер охранного документа: 0002610150
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.bb52

Способ управления приемниками воздушного давления

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и...
Тип: Изобретение
Номер охранного документа: 0002615813
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bf3b

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617210
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.bf46

Способ формирования маршрута носителя пеленгатора

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета. Достигаемый технический результат - формирование маршрута носителя пеленгатора, определяющего местоположение излучателя, при котором достигается...
Тип: Изобретение
Номер охранного документа: 0002617127
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfc3

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002617157
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c160

Способ определения дальности до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения дальности с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617447
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c5b9

Фазовый пеленгатор

Изобретение относится к области радиотехники и может использоваться в радиомониторинге при поиске источников радиоизлучения на ограниченной территории и в помещениях, например, специальных электронных устройств перехвата информации. Достигаемый технический результат изобретения - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002618522
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c61d

Способ буксировки самолетов с использованием малогабаритного буксировщика с дистанционным управлением

Изобретение относится к наземному обеспечению воздушных судов, в частности к их буксированию. Способ буксировки реализуется использованием малогабаритного буксировщика с дистанционным управлением, включающего рампу (8) механизма подъема и фиксации колес передней стойки воздушного судна и...
Тип: Изобретение
Номер охранного документа: 0002618611
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.cb3f

Способ измерения задержки радиосигналов

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный...
Тип: Изобретение
Номер охранного документа: 0002620131
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb48

Способ амплитудного двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – обеспечение двухмерного всеракурсного пеленгования одновременно в двух...
Тип: Изобретение
Номер охранного документа: 0002620130
Дата охранного документа: 23.05.2017
Показаны записи 1-4 из 4.
10.04.2015
№216.013.404e

Квадролет

Изобретение относится к авиационной технике, в частности к винтокрылым летательным аппаратам с двумя и более винтами. Квадролет содержит корпус с установленным в нем стационарным полезным оборудованием, четыре средства тяги с несущими винтами, каждое из которых расположено на раме,...
Тип: Изобретение
Номер охранного документа: 0002547950
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.51c1

Способ очистки полых изделий

Изобретение относится к способу очистки внутренних полостей полых изделий и может использоваться в машиностроении и других отраслях промышленности. Способ очистки заключается в прокачке через полость жидкости с неустановившимся режимом течения. При этом неустановившийся режим течения создают...
Тип: Изобретение
Номер охранного документа: 0002552450
Дата охранного документа: 10.06.2015
26.08.2017
№217.015.eb5a

Устройство защиты технических объектов от механического воздействия поражающих элементов

Изобретение относится к средствам защиты от механического воздействия поражающих элементов и может быть использовано для повышения боевой живучести технических объектов, например летательных аппаратов. Устройство защиты состоит из гибкой преграды, закрепленной по периметру участка обшивки...
Тип: Изобретение
Номер охранного документа: 0002628415
Дата охранного документа: 16.08.2017
09.06.2018
№218.016.6000

Летательный аппарат

Изобретение относится к авиационной технике, в частности к винтокрылым летательным аппаратам с двумя и более винтам. Летательный аппарат содержит средства тяги с несущими винтами и фюзеляж с выносными балками, на которых установлены рамы с возможностью поворота вокруг оси балок на угол 360°....
Тип: Изобретение
Номер охранного документа: 0002656932
Дата охранного документа: 07.06.2018
+ добавить свой РИД