×
02.11.2019
219.017.ddd6

Результат интеллектуальной деятельности: Способ проращивания семян сельскохозяйственных культур

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сельского хозяйства. Способ включает воздействие магнитного поля. Подготавливают подложку из нейтральных материалов, на которую помещают гигроскопический нецеллюлозный материал с водой, на поверхность которого насыпают порошок из минерала шунгита. Поверх шунгита помещают предварительно стерилизованные семена, которые подвергают воздействию постоянного магнитного поля с магнитной индукцией 30 мТл при непрерывном освещении люминесцентными светильниками. Дополнительно подготавливают подложки, которые устанавливают на разных уровнях относительно создающих постоянное магнитное поле полюсов магнитов. Способ позволяет уменьшить сроки прорастания семян и увеличить процент выхода пригодных к посадке проростков. 1 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к области сельского хозяйства, преимущественно к способам и устройствам для проращивания семян, корней и т.п. перед посевом или посадкой проростков.

Способы стимуляции проращивания сельскохозяйственных культур традиционно включают, в частности, их замачивание и проращивание во влажном состоянии.

Описаны различные способы стимуляции проращивания, в том числе физические (с помощью нагревания и охлаждения), химические (с помощью химреагентов), физико-химические (с помощью обработки в электрических и магнитных полях и др.)

Запатентован способ стимуляции проращивания семян, который включает их замачивание в течение 3-х часов в католите электрохимически активированного водного раствора 0,5 г/л KCl с pH 11,6, ОВП - 900 мВ [RU 2553238]. Способ позволяет упростить и ускорить технологию проращивания семян сельскохозяйственных культур.

Недостатки способа - долгая подготовка раствора для проращивания семян. Наиболее приемлемыми способами являются такие, которые не требуют приготовления специальных растворов.

Известен способ [RU 2492625], который включает замачивание семян сельскохозяйственных культур в омагниченной водопроводной воде с последующим проращиванием. При этом семена замачивают в воде, обработанной в магнитном поле магнитной мешалки типа ММ, в емкости из неэлектропроводного материала, например стакане из стекла с магнитным стержнем, при толщине слоя 40 мм. Магнитное поле создается вращающимися постоянными магнитами при скорости вращения 500-600 об./мин в течение 3,5-4-х часов с получением воды с рН 8,3-8,4, ОВП 150-160 мВ, из исходной воды с рН 7,7-8,2, ОВП +200-+215 мВ и общей минерализацией 200-350 мг/л. Параметры магнитной обработки - магнитная напряженность 1,0-1,3 кА/м, магнитная индукция 1,2-1,7 мТ, удельная энергия 800-900 Дж/л. Способ позволяет повысить эффективность обработки семян.

Недостатки способа - необходимость продолжительных манипуляций с водой. Влияние магнитными полями является на сегодняшний день актуальным.

Известен способ предпосевной обработки семян [RU 2652185], включающий воздействие на семена электромагнитным излучением и магнитным полем. При этом воздействие осуществляют последовательно электромагнитным излучением на частоте линии спектра поглощения кислорода 129 ГГц в течение 30 минут и затем переменным магнитным полем с индукцией 25 мТл с частотой 2 Гц в течение от одного часа [прототип]. Способ обеспечивает увеличение эффективности стимуляции всхожести семян.

Недостатки способа - двухэтапность (сначала влияют электромагнитным излучением на частоте линии спектра поглощения кислорода 129 ГГц в течение 30 минут и затем переменным магнитным полем с индукцией 25 мТл с частотой 2 Гц в течение от одного часа), необходимость засекать время обработки, значительные затраты электричества.

Более удобными способами являются одноэтапные, не обязывающие выдерживать временные интервалы.

Задачей заявляемого способа является управление процессом роста и развития семян гороха, сочетанием воздействие постоянного магнитного поля и внесения минерала шунгита в среду проращивания.

Технический результат заключается в уменьшении сроков прорастания семян и увеличения процента выхода пригодных к посадке проростков.

Указанный технический результат достигается тем, что в способе проращивания семян сельскохозяйственных культур подготавливают подложку из нейтральных материалов (пластик, стекло, керамика), кроме дерева (впитывается вода) и металла (так как происходит окисление в воде и взаимодействует с магнитом, что способствует изменению магнитного поля).

На подложку выстилают гигроскопический нецеллюлозный материал, на который наливают воду.

На впитавшую воду поверхность из гигроскопического нецеллюлозного материала насыпают порошок из минерала шунгита, поверх которого выкладывают предварительно стерилизованные семена.

Сверху и снизу от подложки устанавливают магниты с разными полюсами.

Между магнитами возможна установка нескольких рядов подготовленных и засеянных подложек.

На фиг. 1 изображена установка для проращивания семян, где:

1. Люминесцентные светильники;

2. Магниты;

3. Семена;

4. Подложка;

5. Гигроскопический нецеллюлозный материал;

6. Дистиллированная вода;

7. шунгит.

Для примера конкретной реализации был использован горох посевной (Pisum sativum L.) сорт «Альбумен». Экспериментальная установка - магниты 2 с прикрепленными на них стальными пластинами в форме дисков диаметром 9 см, которые расположены на концах металлических дугообразных направляющих. Магнитная индукция поля 30 мТл. Установку располагают на деревянной полке на металлическом стеллаже, оснащенном люминесцентными светильниками 1 марки Т8 OSRAM L36 W/77 FLUORA G13 и длиной 1200 мм (1400 lm). Освещали непрерывно. Семена гороха проращивали методом водной культуры. Перед проращиванием проводили стерилизацию семян гороха: 5 минут выдерживали в мыльной воде, постоянно перемешивая. Три раза промывали дистиллированной водой, После сливания воды семена заливали 50 мл 3% перекиси водорода и перемешивали 5 минут, затем раствор сливали. В качестве подложки 4 использовали чашку Петри, в крышку которой наливали дистиллированную воду (чтобы не было воздействия примесей, присутствующих в обычной воде) и помещали в эту крышку чашку меньшего диаметра, на дно которой помещали универсальное полотенце из материала спанлейс марки «Эконом smart» размером 20×23 см, при этом края салфетки подворачивали так, что концы салфетки были опущены в воду в чашку большего диаметра. На салфетку равномерно насыпали 2 г шунгитового порошка марки "Петрошунгит". Семена выкладывали в чашку Петри диаметром 9 см по 50 горошин на шунгит. Чашки Петри с семенами гороха помещали между стальными пластинами магнитной установки. Проращивали при комнатной температуре.

Результаты оценивали посредством ежедневного подсчета проросших (жизнеспособных) семян, а также измерением длины корней на 5 день проращивания.

При этом чашки Петри располагались в установке уровнями (верхним и нижним). Верхняя уровень из чашек ближе к южному полюсу, нижний уровень из чашек ближе к северному полюсу. Исследования показали, что использование шунгита и воздействие магнитного поля (особенно у южного полюса) повышали уровень прорастания семян гороха по сравнению с другими вариантами, которые изображены на фиг. 2, где на фиг. 2А изображены графики зависимости уровня прорастания жизнеспособных семян от времени проращивания на подложке, расположенной вблизи южного полюса постоянного магнитного поля (ПМП) (верхний уровень), а на фиг. 2Б изображены графики зависимости уровня прорастания жизнеспособных семян от времени проращивания на подложке, расположенной вблизи северного полюса (нижний уровень). Эти графики были построены при разных условиях проведения эксперимента, а именно:

синим пунктиром изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 только с водой 6 (контроль);

сиреневой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 только с водой 6, но помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2;

фиолетовой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7;

голубой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из графита;

оранжевой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из активированного угля;

зеленой сплошной линией изображен график, выполненный при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7, помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2.

Из этих графиков видно, что наименьшее время прорастания семян и наибольший процент (~ 98%) выхода жизнеспособных семян наблюдается при помещении семян 3 на подложку 4 с гигроскопическим нецеллюлозным материалом 5 с водой 6, поверх которого был насыпан порошок из минерала шунгита 7, помещенной в постоянное магнитное поле (ПМП), создаваемое магнитными полюсами 2 (зеленая линия). При этом прорастание семян гороха посевного было интенсивнее в 2,2-2,5 раза по сравнению с контролем.

Для оценки влияния шунгита, внесенного в чашку Петри, на ростовые характеристики гороха, проводили морфометрический анализ, а именно измерение корней на 5-е сутки. В условиях комбинированного воздействия ПМП и шунгита, а также при добавлении только шунгита корни гороха были на 49-67% длиннее, чем в вариантах без добавления шунгита (фиг. 3). Проращивание в ПМП с добавлением шунгита увеличивало длину корней в 3 раза по сравнению с контролем.


Способ проращивания семян сельскохозяйственных культур
Способ проращивания семян сельскохозяйственных культур
Источник поступления информации: Роспатент

Показаны записи 61-70 из 90.
04.04.2019
№219.016.fb27

Сложный оксид лантана, молибдена и теллура

Изобретение относится к области химии и касается синтеза сложного оксида лантана, молибдена и теллура LaMoTeO, который может быть использован для получения лантансодержащих теллуритно-молибдатных стекол не только в качестве компонента шихты наряду с другими соединениями, но и в качестве...
Тип: Изобретение
Номер охранного документа: 0002683834
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb80

Способ получения сложного оксида лантана, молибдена и теллура

Изобретение относится к области химии и касается способа синтеза сложного оксида лантана, молибдена и теллура, который может быть использован для получения лантансодержащих теллуритно-молибдатных стекол. Способ получения сложного оксида лантана, молибдена и теллура LaMoTeO включает растворение...
Тип: Изобретение
Номер охранного документа: 0002683833
Дата охранного документа: 02.04.2019
06.04.2019
№219.016.fdce

Применение сложного оксида лантана, молибдена и теллура

Изобретение относится к области химии и касается применения сложного оксида лантана, молибдена и теллура, имеющего химическую формулу LaMoTeO, для получения лантансодержащих теллуритно-молибдатных стекол простым и технологичным способом. LaMoTeO может быть использован не только в качестве...
Тип: Изобретение
Номер охранного документа: 0002684087
Дата охранного документа: 03.04.2019
08.05.2019
№219.017.48f2

Способ получения сложного оксида лантана, вольфрама и теллура lawteo

Изобретение относится к области химии и касается способа получения сложного оксида лантана, вольфрама и теллура LaWTeO. В качестве исходных веществ используют гексагидрат нитрата лантана, тетрагидрат додекавольфрамата аммония и ортотеллуровую кислоту, взятые в мольном соотношении 24:1:72....
Тип: Изобретение
Номер охранного документа: 0002686828
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a4c

Применение сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается применения сложного оксида празеодима, молибдена и теллура, имеющего химическую формулу PrMoTeO в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Техническим результатом от использования изобретения...
Тип: Изобретение
Номер охранного документа: 0002686941
Дата охранного документа: 06.05.2019
16.05.2019
№219.017.5286

Способ получения сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается синтеза сложного оксида празеодима, молибдена и теллура PrMoTeO, который может быть использован в качестве компонента в составе шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Исходные компоненты по отдельности растворяют в...
Тип: Изобретение
Номер охранного документа: 0002687420
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5295

Способ получения сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается синтеза сложного оксида празеодима, молибдена и теллура PrMoTeO, который может быть использован в качестве компонента в составе шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Исходные компоненты по отдельности растворяют в...
Тип: Изобретение
Номер охранного документа: 0002687419
Дата охранного документа: 13.05.2019
07.06.2019
№219.017.7512

Сложный оксид празеодима, молибдена и теллура prmoteo

Изобретение относится к области химии и касается сложного оксида празеодима, молибдена, теллура, имеющего химическую формулу PrMoTeO, который может быть использован в качестве компонента шихты для получения празеодимсодержащих теллуритно-молибдатных стекол. Техническим результатом от...
Тип: Изобретение
Номер охранного документа: 0002690812
Дата охранного документа: 05.06.2019
20.06.2019
№219.017.8c98

Производное цинкового металлокомплекса хлорина-e и его применение

Изобретение относится к производному цинкового металлокомплекса хлорина-е общей формулы: Также предложено применение производного в качестве агента для фотодинамической терапии. Изобретение позволяет повысить однородность, улучшить водорастворимость, увеличить селективность накопления...
Тип: Изобретение
Номер охранного документа: 0002691754
Дата охранного документа: 18.06.2019
23.07.2019
№219.017.b6de

Способ оценки биологического возраста

Изобретение относится к медицине, а именно к функциональной диагностике, и может использоваться для оценки биологического возраста. Производят измерение систолического давления (САД), массы тела (МТ). Дополнительно измеряют: жизненную емкость легких (ЖЕЛ), динамометрию правой кисти (ДПК),...
Тип: Изобретение
Номер охранного документа: 0002695022
Дата охранного документа: 18.07.2019
Показаны записи 1-1 из 1.
27.07.2019
№219.017.b984

Способ культивирования микромицета trichoderma virens

Изобретение относится к биотехнологии. Способ культивирования микромицета Trichoderma virens включает подготовку плотной питательной среды, на поверхность которой вносят порошок из минерала шунгита и посев на нее микромицета Trichoderma virens с последующим культивированием под воздействием...
Тип: Изобретение
Номер охранного документа: 0002695674
Дата охранного документа: 25.07.2019
+ добавить свой РИД