×
30.10.2019
219.017.dbab

Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к аддитивному изготовлению объемных микроразмерных структур из наночастиц путем спекания наночастиц на подложке. Получают поток аэрозоля с наночастицами в импульсно-периодическом газовом разряде в потоке транспортного газа, затем производят нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортируют полученный поток аэрозоля с наночастицами к головке с соплом для фокусировки его на подложке, подают в указанное сопло поток аэрозоля с наночастицами и одновременно защитный газ с обеспечением фокусировки потока аэрозоля наночастиц на подложке и осаждают наночастицы из сфокусированного потока аэрозоля на подложку. Осаждение и спекание наночастиц на подложке ведут в атмосфере защитного газа, которую создают под соплом. Предложено устройство для осуществления упомянутого выше способа. Обеспечивается изготовление качественных объемных микроразмерных структур при улучшении санитарно-гигиенических условий производства. 2 н. и 6 з.п. ф-лы, 6 ил., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц, которые применяются в электронике, фотонике, медицинской, аэрокосмической технике и других областях.

Известен способ и устройство для изготовления объемных структур путем последовательного осаждения слоев из частиц магнитного материала с помощью нагревательного устройства, устройства осаждения, опоры и маски через которую осуществляется осаждение частиц. Недостатками данных технических решений является то, что в нем требуется использование специальных масок для осаждения частиц, что приводит к дополнительным расходам на их изготовление и потерям частиц на поверхности маски [1].

Известен способ изготовления объемных структур из наночастиц с использованием наночернил, включающий получение потока аэрозоля с наночастицами, транспортирование потока к соплу головки, фокусировку и осаждение наночастиц из потока аэрозоля на подложку с последующим спеканием массивов осажденных наночастиц [2, 3].

Известно также устройство для осуществления данного способа, включающее блок получения потока аэрозоля с наночастицами, сообщенный с источником транспортного газа, соединенная с блоком получения потока аэрозоля головка с соплом, подложку и устройство спекания на подложке массивов осажденных наночастиц [2, 3].

Данные технические решения позволяют изготавливать объемные структуры из наночастиц. Однако при их применении возникают трудности с приготовлением наночернил, такие как подбор растворителей и стабилизаторов. При этом существуют особые требования к условиям их хранения и транспортировки.

В результате использования растворителей и стабилизаторов в наночернилах происходит загрязнение окружающей среды. После применения наночернил требуется удаление растворителей и стабилизаторов с полученных объемных структур из наночастиц. Относительно высокая стоимость наночернил приводит к удорожанию изготовления объемных структур из наночастиц. При использовании данного способа происходит засорение сопел крупными микрокаплями.

Результат, для достижения которого направлено данное техническое решение, заключается в возможности изготовления объемных микроразмерных структур из наночастиц требуемого качества без использования наночернил при одновременном улучшении санитарно-гигиенические условий производства.

Указанный результат достигается за счет того, что в способе изготовления объемных микроразмерных структур из наночастиц, включающем получение потока аэрозоля с наночастицами, транспортирование потока к соплу головки, фокусировку и осаждение наночастиц из потока аэрозоля на перемещаемую подложку с последующим спеканием массива осажденных наночастиц, получение потока аэрозоля с наночастицами осуществляют в импульсно-периодическом газовом разряде в потоке транспортного газа, перед транспортировкой потока к соплу головки производят оптимизацию размера, формы и химического состава наночастиц посредством нагревания их в потоке транспортного газа, путем подачи в головку дополнительного потока защитного газа под соплом создают защитную газовую атмосферу, в которой осуществляют фокусировку, осаждение и спекание массива осажденных наночастиц. При оптимизации размера, формы и химического состава наночастиц дополнительно может подаваться реактивный газ. Спекание массива осажденных наночастиц могут производить сфокусированным лучом лазера, причем фокус луча располагают на расстоянии L от оси сопла, принимаемым в соответствии с выражением L=TV, где Т - время формирования массива осажденных наночастиц, V - скорость относительного перемещения подложки.

Указанный результат достигается за счет того, что в устройстве для изготовления объемных микроразмерных структур из наночастиц, включающем блок получения потока аэрозоля с наночастицами, сообщенный с источником транспортного газа, соединенную с блоком получения потока аэрозоля головку с соплом, подложку, и устройство спекания на подложке массива осажденных наночастиц, оно снабжено содержащим нагревательный элемент блоком оптимизации, вход которого сообщен с блоком получения потока аэрозоля с наночастицами, а выход - с головкой и соплом. Второй вход блока оптимизации может быть сообщен с источником реактивного газа. Устройство спекания выполнено может быть выполнено в виде лазерно-оптического устройства. Устройство для изготовления объемных микроразмерных структур из наночастиц может быть дополнительно также снабжено координатным столом, с которым скреплена подложка, а оптическая ось лазерно-оптического устройства размещена в плоскости, проходящей через ось сопла.

Пример выполнения заявляемого технического решения поясняется чертежами, где на фиг. 1 и 2 приведено заявленное устройство, на фиг. 3 представлен график распределения концентрации частиц в зависимости от их диаметра до (а) и после (б) блока оптимизации, на фиг. 4 - снимок наночастиц серебра с просвечивающего электронного микроскопа, на фиг. 5 - оптическое изображение массивов осажденных наночастиц серебра на стеклянной подложке, на фиг. 6 - растровое электронно-микроскопическое изображение профиля объемной микроразмерной структуры из спеченного массива осажденных наночастиц серебра на стеклянной подложке.

Устройство для изготовления объемных микроразмерных структур из наночастиц, включает блок 1 получения потока аэрозоля с наночастицами, сообщенный с источником 2 транспортного газа, соединенную с блоком получения потока аэрозоля головку 3 с соплом 4, подложку 5, и лазерно-оптическое устройство 6 для спекания на подложке массива осажденных наночастиц 7.

Устройство снабжено блоком 8 оптимизации, содержащим нагревательный элемент 9. Вход 10 блока 8 оптимизации сообщен с блоком 1 получения потока аэрозоля с наночастицами, а его выход 11 - с головкой 3 и соплом 4. Второй вход 12 блока оптимизации сообщен с источником 13 реактивного газа. Головка 3 сообщена с источником 14 защитного газа.

Устройство снабжено также координатным столом 15, с которым скреплена подложка 5. Оптическая ось 16 лазерно-оптического устройства 6 размещена в плоскости, проходящей через ось 17 сопла. Головка 3 сообщена с источником 14 защитного газа.

Способ изготовления объемных микроразмерных структур из наночастиц заключается в следующем.

Транспортный газ из источника 2 подается в блок 1 получения потока аэрозоля с наночастицами, где в импульсно-периодическом газовом разряде осуществляют получение аэрозоля с наночастицами. Этот процесс происходит за счет электрической эрозии материала электродов.

Полученный аэрозоль с наночастицами поступает в блок 8 оптимизации, в котором выполняется оптимизация размера, формы и химического состава наночастиц. Оптимизация размера и формы наночастиц происходит за счет их нагревания в потоке транспортного газа, а оптимизацию химического состава наночастиц, в случае необходимости, производят за счет применения реактивного газа, который подбирают в соответствии с материалом наночастиц.

Аэрозоль с наночастицами после блока 8 оптимизации подают к головке 3 с соплом 4, в которую, одновременно, подают из источника 14 защитный газ, за счет которого происходит фокусировка наночастиц из потока аэрозоля на участке 18 сопла 4, и на его выходе формируется сфокусированный пучок 19 наночастиц, который осаждается на подвижной относительно сопла 4 подложке 5.

В данном примере подложку 5 закрепляют на координатном столе 15, однако головка 3 с соплом 4 может перемещаться относительно подложки.

Спекание массива 7 осажденных наночастиц на подложке 5 выполняют сфокусированным лучом 20 лазерно-оптического устройства 6 в газовой защитной атмосфере 21, при этом фокус 22 сфокусированного луча 20 располагают на расстоянии L от оси 17 сопла, принимаемым в соответствии с выражением L=TV, где Т - время формирования массива осажденных наночастиц, V - скорость относительного перемещения подложки.

Пример выполнения способа.

В блоке 1 получения потока аэрозоля с наночастицами в качестве материала было использовано серебро. В импульсно-периодическом газовом разряде в потоке транспортного газа были получены наночастицы, которые были оптимизированы в блоке 8 оптимизации.

На Фиг. 3 представлен график распределения концентрации частиц в зависимости от их диаметра до (а) и после (б) блока оптимизации. График получен в результате измерений с помощью аэрозольного спектрометра. Аэрозольные наночастицы серебра получены в импульсно-периодическом газовом разряде в потоке транспортного газа в результате электрической эрозии серебряных электродов.

Из графика видно, что после прохождения блока оптимизации, размер и концентрация частиц уменьшается, так как полученные неоптимизированные наночастицы серебра в форме агломератов при спекании в блоке оптимизации становятся более компактными и сферическими, и их количество сокращается. Этот вывод подтверждается данными, приведенными на фиг. 4, где на снимке наночастиц серебра с просвечивающего электронного микроскопа видно, что с увеличением температуры оптимизации от 25 до 750°С, полученные неоптимизированные наночастицы серебра в форме агломератов, по мере увеличения температуры блока оптимизации трансформируются в сферические наночастицы, а их количество уменьшается.

Сферические наночастицы в отличие от агломератов, имеющих неправильную форму, эффективнее фокусируются в головке с соплом и позволяют получать более мелкомасштабные массивы осажденных наночастиц на подложке.

Это подтверждается, представленными на фиг. 5, оптическими изображениями массивов осажденных наночастиц серебра на стеклянной подложке, полученные без (а) и с (б) использованием блока оптимизации. Как видно на фиг. 5, использование блока оптимизации позволяет получать более мелкомасштабные массивы осажденных наночастиц с однородными по форме границами (фиг. 5б) в отличие от массивов осажденных наночастиц, полученных без блока оптимизации (фиг. 5а).

На Фиг. 6, в качестве примера, представлено растровое электронно-микроскопическое изображение профиля объемной микроразмерной структуры из спеченного массива осажденных наночастиц серебра на стеклянной подложке, полученной с помощью фокусировки и осаждения наночастиц из потока аэрозоля на перемещаемую подложку. Объемная микроразмерная структура из наночастиц серебра имеет колоколообразную форму поперечного профиля, ширина основания и высота профиля которой управляется параметрами процесса фокусировки и осаждения наночастиц из потока аэрозоля.

При применении данных технических решений по сравнению со способом изготовления объемных структур из наночастиц, где применяют наночернила, повышается стойкость к засорению сопла, достигаются однородные и более мелкомасштабные объемные структуры.

Таким образом данное техническое решение позволит:

- улучшить санитарно-гигиенические условия при создании изделий из-за отсутствия растворителей и стабилизаторов;

- изготавливать объемные микроструктуры из наночастиц надлежащего качества с высокой химической чистотой и обладающие необходимыми свойствами;

- удешевить изготовление объемных микроразмерных структур из наночастиц.

Источники информации

1. Патент US №10022789, МПК - B22D 23/00, 07.2018

2. Патент US №10068863, МПК-B05D 5/12, 09.2018

3. Патент US №9114409, МПК - В05В 7/00, 2015


Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
Источник поступления информации: Роспатент

Показаны записи 1-10 из 33.
14.05.2019
№219.017.51ea

Низкочастотная двухкомпонентная донная сейсмическая коса

Изобретение относится к сейсмическим регистрирующим системам и может быть использовано при поисках и разведке углеводородов, а также мониторинге нефтегазовых месторождений. В частности, техническое решение относится к двухкомпонентным сейсмическим системам, основанным на одновременном измерении...
Тип: Изобретение
Номер охранного документа: 0002687297
Дата охранного документа: 13.05.2019
24.05.2019
№219.017.5f13

Газочувствительный композит и способ его изготовления

Группа изобретений относится к электронике и предназначена для получения газочувствительного материала, используемого в устройствах, преобразующих концентрацию детектируемого примесного газа в воздухе в электрический сигнал. Газочувствительный композит содержит непроводящую волокнистую матрицу...
Тип: Изобретение
Номер охранного документа: 0002688742
Дата охранного документа: 22.05.2019
06.07.2019
№219.017.a70f

Генератор для получения наночастиц в импульсно-периодическом газовом разряде

Изобретение относится к области нанотехнологий, в частности к генератору для получения наночастиц в импульсно-периодическом разряде. Генератор содержит разрядную камеру (4) с каналом входа газа (11) и каналом выхода газа (12) с аэрозольными частицами. Два изолированных электрода (1), (2) из...
Тип: Изобретение
Номер охранного документа: 0002693734
Дата охранного документа: 04.07.2019
17.07.2019
№219.017.b559

Способ сольвентной деасфальтизации тяжелого нефтяного сырья и растворитель для реализации способа

Изобретение относится к области нефтепереработки и, в частности, к процессам сольвентной деасфальтизации (СДА) тяжелых нефтей, природных битумов и тяжелых нефтяных остатков. Описан способ сольвентной деасфальтизации тяжелого нефтяного сырья, в соответствии с которым процесс осадительной...
Тип: Изобретение
Номер охранного документа: 0002694533
Дата охранного документа: 16.07.2019
27.07.2019
№219.017.b9d2

Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата

Изобретение относится к области измерительной техники, в частности метеорологии, и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. В интересующую область пространства запускают беспилотный летательный аппарат (БПЛА) с возможностью измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002695698
Дата охранного документа: 25.07.2019
01.08.2019
№219.017.bb30

Глубоководный гидрофон

Изобретение относится к измерительной технике, в частности к прямому измерению параметров волн сжатия - разряжения, распространяющихся в жидких и газообразных средах, которые могут характеризоваться повышенным относительно нормальных условий статическим давлением в среде. Изобретение может...
Тип: Изобретение
Номер охранного документа: 0002696060
Дата охранного документа: 30.07.2019
02.08.2019
№219.017.bb70

Способ реконфигурируемой фильтрации для понижения пик-фактора ofdm-сигналов и устройство для его реализации

Изобретение относится к области передачи дискретной информации и используется в передающих устройствах беспроводных систем передачи с OFDM-модуляцией. Технический результат состоит в увеличении эффективности системы путем снижения пик-фактора OFDM-сигнала при допустимом уровне внутриполосного...
Тип: Изобретение
Номер охранного документа: 0002696092
Дата охранного документа: 31.07.2019
16.08.2019
№219.017.c047

Использование сигнальных пептидов митохондриальной локализации для увеличения уровня гетерологической экспрессии белков в p.pastoris и s.cerevisiae

Настоящее изобретение относится к области биотехнологии и молекулярной биологии. Описаны сигнальные пептиды митохондриальной локализации (последовательности представлены в табл. 1: SEQ ID 1, SEQ ID 2, SEQ ID 3, SEQ ID 4, SEQ ID 5, SEQ ID 6, SEQ ID 7, SEQ ID 8, SEQ ID 9, SEQ ID 10). При...
Тип: Изобретение
Номер охранного документа: 0002697218
Дата охранного документа: 13.08.2019
01.09.2019
№219.017.c55a

Молекулярно-электронный гидрофон с обратной связью на основе магнитогидродинамического эффекта

Изобретение относится к измерительной технике, в частности к способам преобразования механического движения в электрический сигнал. Молекулярно-электронный гидрофон с обратной связью состоит из двух камер, заполненных проводящей жидкостью и разделенных мембраной. В одной из камер находится...
Тип: Изобретение
Номер охранного документа: 0002698527
Дата охранного документа: 28.08.2019
19.10.2019
№219.017.d83c

Способ моделирования отморожения кожных покровов в гипоксических условиях

Изобретение относится к медицине, а именно к экспериментальной биологии, и может быть использовано для моделирования отморожения кожных покровов экспериментальных животных в гипоксических условиях. Создают контактную модель отморожения кожи с применением жидкого азота. Охлаждению жидким азотом...
Тип: Изобретение
Номер охранного документа: 0002703473
Дата охранного документа: 17.10.2019
Показаны записи 1-10 из 39.
20.11.2013
№216.012.81b4

Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера

Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде...
Тип: Изобретение
Номер охранного документа: 0002498880
Дата охранного документа: 20.11.2013
20.05.2014
№216.012.c52d

Способ изготовления порошкового композита сu-cd/nb для электроконтактного применения

Изобретение относится к порошковой металлургии, в частности к получению металлокерамических электроконтактных материалов Cu-Cd/Nb. Из порошков меди и ниобия готовят шихту, проводят холодное прессование и спекание. Введение кадмия в заготовку осуществляют диффузионным насыщением путем ее...
Тип: Изобретение
Номер охранного документа: 0002516236
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cc25

Композиция для материала смачиваемого покрытия катода алюминиевого электролизера

Изобретение относится к композиции для материала смачиваемого покрытия катода алюминиевого электролизера для производства алюминия из криолит-глиноземных расплавов. В составе порошковой композиции для материала смачиваемого покрытия катода алюминиевого электролизера, содержащей функциональный...
Тип: Изобретение
Номер охранного документа: 0002518032
Дата охранного документа: 10.06.2014
10.05.2015
№216.013.497a

Способ измерения отклонений от плоскостности

Изобретение относится к технике проведения измерений и определения отклонений от плоскостности плоских поверхностей различной площади и протяженности, в частности поверочных, монтажных и разметочных плит, элементов технологического оборудования и устройств, требующих обеспечения плоскостности...
Тип: Изобретение
Номер охранного документа: 0002550317
Дата охранного документа: 10.05.2015
27.07.2015
№216.013.65a3

Фитотрон

Изобретение относится к сельскому хозяйству, в частности к климатическим камерам для выращивания растений. Фитотрон содержит рабочую камеру с расположенными в нижней и верхней частях вентиляционными отверстиями, размещенные в рабочей камере температурный датчик, выполненные с вентиляционными...
Тип: Изобретение
Номер охранного документа: 0002557572
Дата охранного документа: 27.07.2015
10.10.2015
№216.013.8133

Способ получения высокопористого носителя катализатора

Изобретение относится к способу получения высокопористого носителя катализатора. Данный способ включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками, и раствор...
Тип: Изобретение
Номер охранного документа: 0002564672
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8513

Фотолюминофорная смесь для изготовления фотолюминесцентной плёнки белых светодиодов

Изобретение относится к области электронной техники и техники освещения на основе полупроводниковых светоизлучающих диодов (СИД), а именно к фотолюминофорной смеси для приготовления фотолюминесцентной пленки белых светодиодов. Смесь содержит связующее, пластификатор, растворитель и порошок...
Тип: Изобретение
Номер охранного документа: 0002565670
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8b2b

Способ создания каталитического слоя на поверхности пористого носителя

Изобретение относится к способу создания каталитического слоя на поверхности пористого носителя. Данный способ включает нанесение наночастиц катализатора, содержащих оксид церия или гомогенный смешанный оксид церия и циркония, на внутреннюю поверхность пористого носителя из оксида алюминия...
Тип: Изобретение
Номер охранного документа: 0002567234
Дата охранного документа: 10.11.2015
13.01.2017
№217.015.890b

Устройство для изготовления объемных изделий

Изобретение относится к изготовлению объемных изделий. Устройство включает стойку, платформу построения, размещенную на стойке герметичную камеру построения, устройства поддержания в камере рабочей среды, подачи порошка и планаризации слоя порошка на платформе построения, послойного лазерного...
Тип: Изобретение
Номер охранного документа: 0002602329
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b537

Способ изготовления объемных изделий и устройство для его осуществления

Группа изобретений относится к изготовлению объемных изделий из порошка в виде заполненной оболочки с донной частью. Формируют на опоре донную часть, затем формируют внешнюю оболочку по высоте из групп слоев, причем каждую из групп слоев формируют путем послойной насыпки порошка, его...
Тип: Изобретение
Номер охранного документа: 0002614291
Дата охранного документа: 24.03.2017
+ добавить свой РИД