×
26.10.2019
219.017.db19

Результат интеллектуальной деятельности: Способ пастилляции селенида цинка

Вид РИД

Изобретение

№ охранного документа
0002704191
Дата охранного документа
24.10.2019
Аннотация: Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с одинаковыми размерами. Для этого используется способ пастилляции селенида цинка путем самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, при этом капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-7,2⋅10 м/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации имеет значение менее или равное 9,7-10 м/с. Изобретение позволяет получать сферические кристаллы ZnSe стехиометрического состава, имеющие моноблочную структуру. 2 ил., 3 пр.

Изобретение относится к области получения кристаллических материалов.

Селенид цинка - распространенный широкозонный полупроводник, применяемый в технике в виде объемных поли- и монокристаллов, а также тонких пленок. Получение пленок чаще всего проводится термическим распылением кристаллической крошки, максимальные линейные размеры отдельных кусочков которой определяются конкретным процессом и обычно находятся в интервале 1-15 мм. Наиболее качественная крошка изготавливается из кристаллов, выращенных из расплава, так как они не содержат примесей, летучих при температурах термического распыления ZnSe. При этом требуется, чтобы кристаллы имели стехиометрический состав, допускаемые отклонения от которого не должны превышать 0,01% (ат.) как в сторону избытка цинка, так и в сторону избытка селена.

Основной недостаток такой крошки - неправильная форма кусочков. Кристаллический селенид цинка при дроблении скалывается по спайности, образуя кусочки разных размеров. Для термического распыления больше всего подошел бы материал с одинаковыми размерами симметричных, лучше сферических, кусочков, имеющих моноблочную структуру, подразумевающую отсутствие границ с разориентировкой свыше одной угловой минуты. Последнее требование важно, так как границы с большей разориентировкой обычно декорируются примесями (исключение составляют атомно-когерентные границы полисинтетических двойников вращения). Перспективным методом получения крошки с одинаковыми размерами из переплавленного ZnSe представляется пастилляция, то есть кристаллизация капель расплава с приданием им требуемых свойств.

Известен способ пастилляции [Jung-Woo Kim, Joachim Ulrich, Prediction of degree of deformation and crystallization time of molten droplets in pastillation process. International Journal of Pharmaceutics, 257 (2003) 205-215] - аналог, в котором капли органического соединения C22H19NO4, формируемые подогреваемой пипеткой, падают на плоскую поверхность охлаждаемого кристаллизатора и затвердевают. К недостаткам способа, помимо неприменимости его к ZnSe, имеющему температуру плавления 1800 К, следует отнести полусферическую форму затвердевших капель.

Известен способ принудительной кристаллизации переохлажденной капли без отрыва от канала, формирующего капли [A. Miyazaki, Н. Kimura. Crystallization Control of Molten Ba(B0.9Al0.1)2О4 from Supercooled Pendant Drop. Cryst. Res.Technol., 2001, v. 36, N 1, p. 3-8] - аналог, в котором кристаллизация висячей переохлажденной капли расплава Ba(B0.9Al0.1)2О4 инициируется принудительно, путем подвода к низу капли, то есть со стороны, противоположной формирующему каналу, холодного стержня из платины, графита или нитрида бора.

К недостаткам этого способа, помимо неприменимости его для кристаллизации ZnSe, следует отнести сложность реализации из-за необходимости точного подвода стержня к капле и низкую производительность из-за необходимости поштучной кристаллизации капель.

Известен способ самопроизвольной кристаллизации капель ZnSe в температурном градиенте, в атмосфере аргона [Н.Н. Колесников, М.П. Кулаков. Поверхностное натяжение расплава ZnSe. ЖФХ, 1988, т. 62, №9, с. 2513-2515] - прототип, в котором расплав селенида цинка каплями вытекает через капилляр, капли свободно падают в атмосфере аргона через зону охлаждения в приемник капель, находящийся в холодной зоне. Самопроизвольная кристаллизация происходит после отрыва капель от формирующего их канала (капилляра) в процессе падения капель через зону охлаждения.

Селенид цинка при температуре плавления имеет давление собственных паров на уровне 0,11 МПа, причем пары диссоциируют, селен испаряется молекулярно в виде Se2, а цинк - атомарно. Селенид цинка диссоциирует при испарении, при этом коэффициент диффузии паров Se2 в аргоне ниже, чем у паров цинка: при давлении Ar 2,0 МПа и температуре 1800 К - 0,086⋅10-4 и 0,135⋅10-4 м2/с, соответственно [Кулаков М.П., Фадеев А.В. О стехиометрии кристаллов селенида цинка, получаемых из расплава. Изв. АН СССР. Неорган, матер., 1981. Т. 17. №9. С. 1565-1570]. Давление же паров над чистыми расплавами компонентов у Se2 выше, чем у Zn: 26,0 и 6,5 МПа при температуре 1800 К, соответственно [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]. Это создает условия для отклонения состава от стехиометрии, которое может быть обусловлено как диффузией паров компонентов во внешней среде, так и конвективным уносом паров компонентов с поверхности расплава.

Закристаллизованные капли, полученные по способу-прототипу, имеют стехиометрический состав, что обеспечивается, главным образом, кристаллизацией падающей капли со всей поверхности к центру. При этом на поверхности капли практически мгновенно образуется слой кристаллического ZnSe, защищающийеще не закристаллизованный расплав от испарения, и, соответственно, предотвращающий как диффузионный, так и конвективный унос паров.

Однако и основной недостаток способа-прототипа связан с тем, что кристаллизация капель происходит в температурном градиенте во время падения через зону охлаждения, что задает кристаллизацию по всей поверхности капли. При этом фронт кристаллизации движется с очень большой (оценочно свыше 2⋅10-3 м/с) скоростью. В результате закристаллизованные капли имеют мелкозернистую структуру с обилием границ с высокой разориентировкой, часто растрескиваются под действием остаточных термических напряжений, а форма капель не является сферической. Последнее обстоятельство обусловлено тем, что при движении фронта от всей поверхности капли к центру, при очень большой скорости кристаллизации, в конечный момент затвердевания остаток расплава и паров в центре капли оказывается под давлением, превышающем внешнее давление аргона. Поэтому закристаллизованная оболочка капли прорывается, остаток расплава выплескивается, образуя на поверхности капли закристаллизованный натек, под которым обнаруживается усадочная раковина, преходящая в каверну, идущую до центра закристаллизованной капли.

Задачей предлагаемого способа является получение закристаллизованных капель, сохраняющих стехиометрический состав, и, при этом, имеющих форму, близкую к сферической, и моноблочную структуру.

Эта задача решается в предлагаемом способе пастилляции ZnSe самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона, за счет кристаллизации капель до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9-7,2⋅10-9 м3/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с.

Предлагаемые технологические параметры процесса выбраны экспериментально.

Процесс получения отдельной закристаллизованной капли начинается с ее формирования. Поскольку в предлагаемом способе не предусматривается быстрая кристаллизация по всей поверхности капли, выбор скорости формирования капли и давления аргона влияет на состав ZnSe.

На графике Фиг. 1 показаны экспериментальные зависимости состава капель, выраженного в концентрации цинка в атомных процентах, от давления аргона (кривая 1) и от объемной скорости формирования капли (кривая 2). Видно, что стехиометрический состав капель (50,00±0,01% ат. Zn) достигается только при объемной скорости формирования капель 6,7⋅10-9-7,2⋅10-9 м3/с и давлении аргона 5,92-6,35 МПа, причем эти параметры связаны между собой.

При давлении Ar менее 5,92 МПа и объемной скорости формирования капель свыше 7,2⋅10-9 м3/с преобладает диффузионный механизм изменения состава расплава в капле, который обогащается селеном, то есть компонентом с меньшим коэффициентом диффузии паров в аргоне.

При давлении аргона свыше 6,35 МПа и объемной скорости формирования капли ниже 6,7⋅10-9 м3/с преобладает изменение состава расплава в капле за счет уноса паров компонентов конвективным потоком Ar, при этом состав обогащается цинком, имеющим меньшее давление собственного пара по сравнению с селеном.

После формирования капли осуществляется ее самопроизвольная кристаллизация. Для проведения процесса необходимо задать градиент температуры в месте формирования капли так, чтобы при достижении требуемого диаметра капли ее нижний край (противоположный формирующему каналу) оказался при температуре ниже температуры кристаллизации, составляющей 1800 К. Кристаллизация начинается в нижней части капли, фронт кристаллизации движется в направлении формирующего канала. Отрыв закристаллизованной капли от расплава в формирующем канале происходит за счет разности плотностей расплава и кристалла (ZnSe имеет отрицательный объемный эффект кристаллизации 13±2% [М.П. Кулаков, А.В. Фадеев, Н.Н. Колесников. Определение некоторых свойств расплава селенида цинка и расчет его состава при кристаллизации. Изв. АН СССР, Неорган, матер., 1986, т. 22, №3, с. 399-402]).

Для получения закристаллизованных капель с моноблочной структурой необходимо выбрать скорость движения фронта кристаллизации, основным определяющим фактором для которой будет совокупность тепловых условий в зоне формирования капель. При этом технологическим параметром процесса следует считать именно скорость, так как тепловые условия, необходимые для получения одной и той же скорости движения фронта кристаллизации, могут отличаться при разных вариантах технического исполнения пастилляторов (устройств для пастилляции).

Скорость движения фронта кристаллизации ≤ 9,7⋅10-6 м/с выбрана экспериментально. При скоростях выше 9,7⋅10-6 м/с закристаллизованные капли не имеют моноблочной структуры - в них появляются границы блоков с разориентировкой свыше одной угловой минуты.

Предлагаемый способ позволяет получать моноблочные кристаллы ZnSe, имеющие стехиометрический состав и практически сферическую форму, что иллюстрируется фотографией на Фиг. 2.

Пример 1.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 7,2⋅10-9 м3/с, давление аргона составляет 5,92 МПа, а скорость движения фронта кристаллизации 9,7⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Пример 2.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,9⋅10-9 м3/с, давление аргона составляет 6,0 МПа, а скорость движения фронта кристаллизации 9,3⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка, показанные на фотографии Фиг. 2. Кристаллы имеют стехиометрический состав и моноблочную структуру.

Пример 3.

Проводится пастилляция селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте, в атмосфере аргона. Капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10-9 м3/с, давление аргона составляет 6,35 МПа, а скорость движения фронта кристаллизации 9,0⋅10-6 м/с. Получены сферические закристаллизованные капли селенида цинка стехиометрического состава, имеющие моноблочную структуру.

Способ пастилляции селенида цинка самопроизвольной кристаллизацией капель в температурном градиенте в атмосфере аргона, отличающийся тем, что капли кристаллизуются до отрыва от формирующего капли канала, причем объемная скорость формирования капель составляет 6,7⋅10 - 7,2⋅10 м/с, давление аргона находится в интервале 5,92-6,35 МПа, а скорость движения фронта кристаллизации ≤9,7⋅10 м/с.
Способ пастилляции селенида цинка
Способ пастилляции селенида цинка
Источник поступления информации: Роспатент

Показаны записи 51-60 из 91.
19.07.2019
№219.017.b631

Способ получения кристаллов cdas

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы CdAs получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель...
Тип: Изобретение
Номер охранного документа: 0002694768
Дата охранного документа: 16.07.2019
17.08.2019
№219.017.c102

Детектор субтерагерцового излучения на основе графена

Изобретение относится к области детекторов электромагнитного излучения в терагерцовом диапазоне частот с использованием нелинейного плазменного отклика двумерной электронной системы. Сущность изобретения: детектор на основе графена, содержащий нелинейный элемент на наноструктуре с двумерной...
Тип: Изобретение
Номер охранного документа: 0002697568
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
03.10.2019
№219.017.d196

Способ изготовления образцов фуллерена с для спектроскопии

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C в полированную поверхность бромида калия. Способ...
Тип: Изобретение
Номер охранного документа: 0002701823
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1c0

Искусственный эритроцинкит

Изобретение относится к искусственным ювелирным кристаллам. Предлагается искусственный эритроцинкит, имеющий в своем составе сульфид цинка, сульфид марганца и сульфид алюминия при следующем соотношении компонентов, мас.%: сульфид алюминия AlS - 0,001-0,01, сульфид марганца MnS - 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002701822
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d219

Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой

Изобретение относится к устройствам для выращивания кристаллов халькогенидов металлов: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, вертикальной зонной плавкой, осуществляемой путем перемещения тигля через неподвижно закрепленный нагреватель. Графитовый тигель состоит из корпуса и крышки 1, имеющей...
Тип: Изобретение
Номер охранного документа: 0002701832
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d285

Способ получения кристаллов cosns

Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава...
Тип: Изобретение
Номер охранного документа: 0002701915
Дата охранного документа: 02.10.2019
19.12.2019
№219.017.ef3e

Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом

Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной...
Тип: Изобретение
Номер охранного документа: 0002709422
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f00f

Способ электроэрозионной обработки поверхности молибдена

Изобретение относится к электроэрозионной обработке поверхности металлов и сплавов, используемой для повышения твердости, жаропрочности и коррозионной стойкости деталей машин. Предложен способ получения покрытия из карбида молибдена на детали из молибдена, включающий электроэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002709548
Дата охранного документа: 18.12.2019
31.01.2020
№220.017.fb95

Высокотемпературные композиты с молибденовой матрицей и способ их получения

Изобретение относится к высокотемпературным композитным материалам с металлической матрицей и к способам их получения и может быть использовано для производства лопаток авиационных газотурбинных двигателей, работающих при температурах до 1400°С. Высокотемпературный композит с молибденовой...
Тип: Изобретение
Номер охранного документа: 0002712333
Дата охранного документа: 28.01.2020
Показаны записи 31-40 из 40.
03.07.2020
№220.018.2dda

Способ получения timnal

Изобретение относится к области металлургии, в частности к получению объемных слитков спин-поляризованного бесщелевого полупроводника TiMnAl, который может быть использован в спинтронике. Способ получения TiMnAl из элементарных титана, марганца и алюминия включает помещение навесок марганца и...
Тип: Изобретение
Номер охранного документа: 0002725229
Дата охранного документа: 30.06.2020
20.04.2023
№223.018.4c95

Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде...
Тип: Изобретение
Номер охранного документа: 0002751059
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4cda

Способ легирования кристаллов сульфида цинка железом или хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ...
Тип: Изобретение
Номер охранного документа: 0002755023
Дата охранного документа: 09.09.2021
21.04.2023
№223.018.4fc4

Способ синтеза шпинели ganbse

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNbSe из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле. Твердофазную...
Тип: Изобретение
Номер охранного документа: 0002745973
Дата охранного документа: 05.04.2021
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c25

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c26

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c68

Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4,...
Тип: Изобретение
Номер охранного документа: 0002759623
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД