×
04.10.2019
219.017.d285

Результат интеллектуальной деятельности: Способ получения кристаллов CoSnS

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава стехиометрического состава состоит в том, что ампулу с предварительно синтезированной загрузкой нагревают в горизонтальной печи до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов. Изобретение позволяет получать монокристаллы CoSnS. 1 ил., 3 пр.

Изобретение относится к области выращивания кристаллов неорганических соединений.

Co3Sn2S2 - это материал, вызывающий в настоящее время повышенный интерес в экспериментальной физике как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Для развития этих исследований, а также для возможных практических применений Co3Sn2S2, необходима разработка способов выращивания монокристаллов.

Наиболее близким по технической сущности к предлагаемому является способ выращивания кристаллов Co3Sn2S2 из расплава [М. Holder, Yu. S. Dedkov, A. Kade, H. Rosner, W. Schnelle, A. Leithe-Jasper, R. Weihrich, S.L. Molodtsov. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Physical Review B, 79, 205116 (2009)] - прототип, в котором предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава нагревают в вакуумированной ампуле, в вертикальной печи, до 1000°С, выдерживают при этой температуре 6 часов, а затем охлаждают до температуры 800°С в течение 72 часов, после чего отключают электропитание печи и охлаждают ампулу до комнатной температуры вместе с печью. Основным недостатком этого метода является то, что полученные кристаллы «состоят из нескольких крупных зерен», то есть являются поликристаллами. Таким образом, способ-прототип не позволяет выращивать монокристаллы Co3Sn2S2.

Задачей данного изобретения является получение монокристаллов Co3Sn2S2.

Эта задача решается в предлагаемом способе за счет того, что процесс проводится в вакуумированной ампуле из расплава стехиометрического состава в горизонтальной печи, ампулу с загрузкой нагревают до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов.

Предлагаемым способом получены монокристаллы Co3Sn2S2, имеющие гексагональную структуру, что подтверждается рентгеноструктурными исследованиями по методу Лауэ в различных точках кристалла. На фотографии Фиг. 1 представлен монокристалл, сколотый по плоскости спайности (). Показаны кристаллографические плоскости, определенные по лауэграммам: (0001) на ростовой поверхности и () на сколе.

Параметры процесса выбраны экспериментально.

Проведение процесса в горизонтальной печи позволяет осуществляться кристаллизации в кристаллографических направлениях, перпендикулярных призматическим плоскостям, например, в направлений [],как в кристалле, представленном на Фиг. 1. В гексагональных кристаллах это обеспечивает сохранение подвижности дислокаций, что предотвращает образование замкнутых дислокационных стенок, часто приводящих к образованию блоков и получению поликристаллов.

При температуре нагрева ниже 920°С не происходит полной гомогенизации расплава. В результате в кристалле образуются блоки, отличающиеся по составу. Подъем температуры выше 940°С не дает дальнейшего положительного эффекта, причем возрастает риск разрушения ампулы вследствие роста давления собственных паров Co3Sn2S2.

Продолжительность выдержки расплава менее 20 часов не обеспечивает полной гомогенизации расплава, что приводит к появлению блочной структуры. Увеличение продолжительности выдержки свыше 22 часов не дает дальнейшего положительного эффекта.

При времени охлаждения менее 45 часов кристалл растрескивается под действием остаточных термических напряжений. Увеличение времени охлаждения свыше 46 часов не дает дальнейшего положительного эффекта.

Пример 1.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 920°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 22 часа, а затем охлаждают до комнатной температуры в течение 45 часов. Получен монокристалл Co3Sn2S2.

Пример 2.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 930°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 21 час, а затем охлаждают до комнатной температуры в течение 45 часов 30 минут. Получен монокристалл Co3Sn2S2, показанный на Фиг. 1.

Пример 3.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 940°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 20 часов, а затем охлаждают до комнатной температуры в течение 46 часов. Получен монокристалл Co3Sn2S2.

Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава стехиометрического состава, отличающийся тем, что процесс проводится в горизонтальной печи, ампулу с загрузкой нагревают до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов.
Способ получения кристаллов CoSnS
Источник поступления информации: Роспатент

Показаны записи 61-70 из 91.
06.02.2020
№220.017.ff42

Способ пространственной стабилизации дуги

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги. Способ пространственной стабилизации...
Тип: Изобретение
Номер охранного документа: 0002713186
Дата охранного документа: 04.02.2020
17.02.2020
№220.018.0385

Способ получения нанокристаллического муассанита

Изобретение относится к области выращивания слоев нанокристаллического гексагонального карбида кремния (муассанита) и может быть использовано в электронной промышленности. Способ включает перемещение ленты углеродной фольги в горизонтальной плоскости с подачей к ее поверхности расплавленного...
Тип: Изобретение
Номер охранного документа: 0002714344
Дата охранного документа: 14.02.2020
13.03.2020
№220.018.0b07

Тигель для выращивания кристаллов на затравку

Изобретение относится к устройствам для выращивания кристаллов на затравку методами Бриджмена, вертикальной зонной плавки, температурного градиента, а также их модификациями. Тигель состоит из корпуса 1 и хвостовика 2 с затравочной камерой 3, выполненной в виде сквозного отверстия в...
Тип: Изобретение
Номер охранного документа: 0002716447
Дата охранного документа: 11.03.2020
21.03.2020
№220.018.0e3a

Сверхпроводящая цепь с участком слабой связи

Использование: для сверхпроводящих логических элементов вычислительной техники. Сущность изобретения заключается в том, что сверхпроводящая цепь с участком слабой связи включает два последовательно расположенных металлических сверхпроводящих контакта, нанесенных на поверхность...
Тип: Изобретение
Номер охранного документа: 0002717253
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0f34

Способ изготовления холодного катода

Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах. Слой углеродных нанотрубок наносят на металлическую подложку осаждением в дуговом разряде. После этого...
Тип: Изобретение
Номер охранного документа: 0002717526
Дата охранного документа: 23.03.2020
28.03.2020
№220.018.115d

Коллинеарный электрод

Изобретение относится к плазменной технике, применяемой в электрометаллургии, и может быть использовано для инициирования высокочастотной плазмы на промышленной частоте 2,45 ГГц для плавления металлических порошков и изготовления деталей сложной геометрической формы в атмосфере защитных газов....
Тип: Изобретение
Номер охранного документа: 0002717841
Дата охранного документа: 26.03.2020
25.04.2020
№220.018.197c

Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления

Группа изобретений относится к медицинской технике. Технический результат состоит в упрощении способа слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности измерения глубины ледяного фронта в ткани с применением спектроскопии рассеяния, не...
Тип: Изобретение
Номер охранного документа: 0002719911
Дата охранного документа: 23.04.2020
20.05.2020
№220.018.1dcf

Неорганический фотохромный материал с пространственно-селективным эффектом памяти

Изобретение относится к области неорганических материалов для твердотельных индикаторов ультрафиолетового излучения. Неорганический фотохромный материал с пространственным эффектом памяти содержит Сu - 0,012-0,015 мас.%, Gd - 0,0004-0,0006 мас.% и ZnS – остальное. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721095
Дата охранного документа: 15.05.2020
29.05.2020
№220.018.217a

Способ выращивания слоев алмаза на подложке монокристаллического кремния

Изобретение относится к области выращивания кристаллов и может быть использовано для получения слоев алмаза большой площади на подложках из монокристаллического кремния. Способ выращивания слоев алмаза, включающий нагрев в вакуумной среде в диапазоне температур от 910°С до 1150°С порошка...
Тип: Изобретение
Номер охранного документа: 0002722136
Дата охранного документа: 26.05.2020
31.05.2020
№220.018.22bb

Сапфировый роликовый аппликатор для криохирургии и криотерапии

Изобретение относится к криогенной технике, а именно криоаппликаторам иммерсионного типа, и может использоваться в криомедицине и ветеринарии. Криоаппликатор содержит ролик и ручку, ролик выполнен из сапфира в виде шлифованного или полированного шара или цилиндра с углублениями на торцах, в...
Тип: Изобретение
Номер охранного документа: 0002722352
Дата охранного документа: 29.05.2020
Показаны записи 41-42 из 42.
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД