×
02.10.2019
219.017.cebb

Результат интеллектуальной деятельности: Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементах в ИК области спектра. Способ получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната с редкоземельными элементами включает приготовление маточного раствора, упаривание до концентрированного состояния, совместное обратное соосаждение через распыление маточного раствора с последующим фильтрованием осажденного порошка прекурссора, декантирование, сушку, и термообработку при 1000°С, при этом маточный раствор азотнокислых солей иттрия, алюминия и азотнокислые соли редкоземельных элементов Er, Tm, Но или их композиций Er-Tm; Er-Но; Er-Tm-Но в пределах 1,0-50,0 ат.% растворяют в дистиллированной воде при нагревании и упаривают до концентрации 0,88÷0,92 моль/л, распыляют в 25% раствор гидроксида аммония, охлажденный до температуры 0°С-2°С сжатым воздухом через капилляр с обеспечением дробления струи насыщенного маточного раствора до туманообразного состояния с получением порошка прекурсора YMeAlO(ОН), где Ме=Er, Tm, Но, х=1,5; 0,05; 0,01, соответственно, пульпу декантируют в дистиллированной воде с добавлением 0,05 мас.% поливинилпирролидона от количества раствора гидроксила аммония с обеспечением образования прослоек, препятствующих гидратации и объединению частиц в плотные агломераты, фильтруют, порошки высушивают горячим воздухом при 60°С-100°С на распылительной сушилке и подвергают механоактивации на мельнице вибрационного или планетарного типа в фторопластовых барабанах циркониевыми шарами диаметром 1,0 мм в течениe 120 минут в среде этанола при соотношении порошка прекурсора к суммарному количеству циркониевых шаров и этанола, равном 1:6,5; этанол удаляют путем сушки суспензии с получением гранул на распылительной сушилке. Способ позволяет одностадийно получать наноструктурированные порошки с высоким гомогенным распределением редкоземельных элементов в объеме кристаллитов порошка, размером частиц 40,0-65,0 нм, дисперсностью по величине удельной поверхности более 120 м/г, в результате чего керамика при изготовлении из этих порошков получается с высоким светопропусканием и оптической однородностью. 3 ил., 1 табл., 5 пр.

Область техники, к которой относится изобретение

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната с оксидами редкоземельных элементов или их композиций с высоким гомогенным распределением оксидов в объеме кристаллитов порошка и их размером 40,0-80,0 нм, что при изготовлении из этих порошков, керамика получается с высоким светопропусканием и оптической однородностью. Эта керамика может широко применяться в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементов в ИК области спектра.

Уровень техники

В качестве легирующих добавок для получения твердого раствора на основе бинарного соединения иттрий - алюминиевого граната (Y3AI5O12) используют оксиды или их композиции редкоземельных элементов: Er2O3; Tm2O3; Ho2O3; Er2O3-Tm2O3; Er2O3-Ho2O3; Er2O3-Tm2O3-Ho2O3, которые вводят в состав иттрий - алюминиевого граната в пределах 0,5-40,0 мас. % по отношению к оксиду иттрия (Y2O3).

При введении в состав иттрий - алюминиевого граната оксидов редкоземельных элементов (ОРЗЭ) или их композиций имеет место образование твердых растворов замещения только катионов иттрия на

катионы редкоземельных элементов (РЗЭ). Поэтому расчеты составов проводятся исходя из формулы твердого раствора Y3-XMeXAI5O12, где X доля катиона ОРЗЭ или сумма долей катионов ОРЗЭ, вводимых в состав иттрий - алюминиевого граната и замещаемых катионов иттрия (Y+3).

Наноструктурированные порошки твердых растворов на основе бинарного соединения иттрий - алюминиевого граната (Y3AI5O12), солегированного ионами редкоземельных элементов получали методом химического обратного осаждения с последующей сушкой и прокаливанием с целью синтеза гомогенного монофазного кубического твердого раствора флюоритовой структуры.

Известны способы получения наноразмерных порошков иттрий - алюминиевого граната (заявка на изобретение JP 2001270775, кл. МПК С04В 35/44, опубл. 2001; заявка на изобретение CN 101386531, кл. МПК С04В 35/622, опубл. 2009; заявка на изобретение CN 101985397 C01F 17/10, опубл. 2011).

Наиболее близким по технической сущности и получаемому результату, выбранный в качестве прототипа может быть использован CN 102815948 А, 12.12.2012, раскрывающий способ получения иттрий-алюминиевого граната с редкоземельными элементами.

Изобретение относится к способу синтеза нанопорошка иттрий-алюминиевого граната (YAG), легированного редкоземельным элементом, относящегося к технической области наноматериалов. Способ в основном включает следующие стадии: растворение азотнокислых солей Y и А1 или Y, Al и РЗЭ в смешанном растворителе вода-спирт, добавление нужного количества легирующей добавки и проведение мгновенного низкотемпературного сжигания брызг при температуре 260-330°С распылением для получения порошка-прекурсора; проведение измельчения в шаровой мельнице, сушке при 90-120°С и прокаливании при 800-1300°С в течение 2-4 часов с получением наночастиц YAG с чистой фазой или нанопорошка YAG с добавлением редкоземельных элементов. Изобретение имеет преимущества простого технического процесса, низкого требования к оборудованию, равномерного распределения частиц по размерам и т.п.; синтезированная мощность может быть использована для приготовления прозрачной керамики YAG, легированного редкоземельным металлом и флуоресцентного порошка YAG, легированного редкоземельным элементом.

Недостатки способа состоят:

- в сложности процесса, связанного с необходимостью проведения двух длительных операций сушки и измельчения, а также с относительно низкой удельной поверхностью и гомогенностью целевого продукта;

- сильным разбрызгиванием исходных продуктов при проведении синтеза методом сгорания и, как следствие, потерей части целевого продукта;

- сильное разбрызгивание исходных продуктов при проведении синтеза методом сгорания приводит к нестехиометричности целевого продукта;

- при проведении синтеза методом сгорания из азотнокислых солей целевой продукт, как правило, загрязняется продуктами неполного сгорания их смеси и добавки в виде органических радикалов и азотсодержащих компонентов.

Раскрытие изобретения

Задача настоящего изобретения обеспечивает получения наноструктурированных порошков твердых растворов на основе бинарного соединения иттрий - алюминиевого граната (Y3AI5O12), легированного или солегированного ионами редкоземельных элементов с высоким гомогенным распределением редкоземельных ионов в объеме частиц порошка и дисперсностью по величине удельной поверхности более 120 м2/г - при одностадийности процесса синтеза.

Технический результат - одностадийность процесса синтеза однофазного колегированного прекурсора на основе Tm2O3, Ho2O3, Er2O3: Y3AI5O12, получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната (Y3AI5O12), легированного и колегированного ионами редкоземельных элементов с высокой степенью гомогенности и дисперсности более 120 м2/г полученного готового продукта. Указанный технический результат достигается благодаря тому, что способ получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната с оксидами редкоземельных элементов или их композиций, включающий растворение маточного раствора солей, упаривание раствора до концентрации 0,88-0,92 моль/л, обратное осаждение через распыление, декантирование, фильтрование, сушку с последующим прокаливанием образующегося однофазного твердого раствора на основе гидроксидов Y3-XMeXAl5O8(OH)4, (Me=Er, Tm, Но), причем согласно изобретению, процесс ведут следующим образом: маточный раствор азотнокислых солей иттрия, алюминия и азотнокислые соли Er; Tm; Но или их композиций Er-Tm; Er-Но; Er-Tm-Но в пределах 1,0-50,0 ат. % по отношению к атому иттрия растворяют в дистиллированной воде при нагревании и упаривают до концентрации 0,88-0,92 моль/л в зависимости от состава, распыляют в 25% раствор гидроксида аммония, охлажденный до температуры 0°С-2°С, сжатым воздухом через капилляр, обеспечивающий дробление струи концентрированного маточного раствора до туманообразного состояния; пульпу декантируют в дистиллированной воде с добавлением катионного ПАВ, отфильтровывают на воронке Бюхнера, высушивают горячим воздухом при 100°С на распылительной сушилке и прокаливают при 1000°С. В качестве катионного ПАВ может быть использован поливинилпирролидон.

Высушенный порошок прекурсора твердых растворов Y3-X MeX AI5O8(OH)4, (Me=Er, Tm, Но) может быть подвергнут механоактивации, предпочтительно, на мельнице вибрационного типа в фторопластовых барабанах циркониевыми шарами, диаметром 1,0 мм в течении 120 минут в среде этанола при соотношении: порошок прекурсора к суммарному количеству циркониевые шары и этанол равному 1:6,5; этанол удаляют путем сушки суспензии с получением гранул 200-300 нм на распылительной сушилке и прокаливают при 1000°С.

Альтернатива - механоактивация на мельнице планетарного типа с использованием фторопласта в качестве мелющей оснастки и жидкую среду, такую как этиловый спирт, в течение 40 минут и прокаливают при температуре 1000°С.

Осуществление изобретения

Способ получения наноструктурированных порошков твердых растворов осуществляют следующим образом: маточный раствор азотнокислых солей иттрия, алюминия и редкоземельных элементов (квалификации "ОСЧ") заданного состава растворяют в дистиллированной воде при нагревании и упаривают до концентрации 0,88-0,92 моль/л в зависимости от вида РЗЭ и их количества. Затем маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, раствор осадителя, в виде 25-ти% водного раствора NH4OH, взятом в 2-х кратном избытке. Полученный прекурсор твердых растворов Y3-XMeXAl5O8(OH)4, образующийся в результате реакции замещения аниона (NO3)1- предшествующих азотнокислых солей иттрия, алюминия и редкоземельных элементов в концентрированный раствор NH4OH на ОН1-, декантируют в дистиллированной воде, с введенным катионным ПАВ в количестве 0,05 мас. % от количества раствора осадителя и фильтруют. ПАВ сегрегируются на поверхности частиц новой фазы прекурсора, замедляя рост и образуя, прослойки, препятствующие их объединению в плотные агрегаты. Полученные порошки прекурсоров малогидратированы, неагломерированы, легко фильтруются и высушиваются в потоке горячего воздуха (60-100°С) на распылительной сушилке. Далее порошки прокаливают с целью синтеза монофазного кубического твердого раствора оксидов РЗЭ или их композиций в иттрий - алюминиевом гранате при температуре 1000°С в течении 5 часов, что соответствует пику кристаллизации твердого раствора на термограмме (Фиг. 1 и 1а). Свойства порошков некоторых составов твердых растворов на основе бинарного соединения иттрий - алюминиевого граната, легированного или солегированного ионами РЗЭ по данным рентгенофазового анализа приведены в таблице 1.

На фиг. 1 представлена типичная диаграмма дифференциально термического анализа (ДТА) порошка прекурсора твердого раствора Y3-XMeXAI5O8(OH)4, где Ме=Er, х=1,5. Наблюдаемый экзотермический эффект соответствует температуре кристаллизации твердого раствора иттрий - алюминиевого граната, легированного ОРЗЭ и составляет ~ 1000°С.

На фиг. 1а представлена типичная диаграмма дифференциально термического анализа (ДТА) порошка прекурсора твердого раствора Y3-XMeXAlO8(OH)4, где Me=Er-Tm-Ho, х=1,5/0,05/0,01. Наблюдаемый эндотермический эффект в температурном интервале от 120°С до 170°С, соответствует образованию монофазного твердого раствора оксигидрата алюмоиттриевого граната, колегированного композицией ОРЗЭ стехиометрического состава.

На фиг. 2 представлена электронная микрофотография иттрий - алюминиевого граната, колегированного оксидами композиции редкоземельных элементов эрбия и тулия прокаленного при 1000°С из которой следует, что мелкие малоугловатые частицы (размер которых составляет 60 нм) слабоагломерированы.

Пример 1. Маточный раствор азотнокислых солей иттрия, алюминия и эрбия квалификации "ОСЧ" состава Y1,5Er1,5Al5O12 (50,0 ат. % Er3+), растворяют при нагревании в дистиллированной воде и упаривают до концентрации 0,89 моль/л. Горячий концентрированный маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, 25-ти% водный раствор NH4OH, взятый в 2-х кратном избытке против стехиометрии. Полученный порошок твердого раствора гидрооксидов состава Y1,5Er1,5Al5O8(OH)4 отфильтровывают на воронке Бюхнера с последующей декантацией дистиллированной с добавлением катионного ПАВ - поливинилпиролидона (0,05 мас. % от количества раствора гидроксила аммония). После просушивания в токе горячего воздуха (100°С) на распылительной сушилке полученный продукт подвергают механоактивации на мельнице вибрационного типа в среде этанола в течении 120 минут. Этанол из полученной суспензии удаляют в токе горячего воздуха (60°С) на распылительной сушилке с получением гранул размером 200-300 нм и прокаливают при 1000°С с выдержкой 2 часа. После прокаливания порошок состоит 100% кубического твердого раствора флюоритовой структуры с размером первичных кристаллитов менее 65 нм.

Пример 2. Маточный раствор азотнокислых солей иттрия, алюминия и тулия квалификации "ОСЧ" состава Y2,95Tm0,05Al5O12 (5,0 ат. % Tm3+), растворяют при нагревании в дистиллированной воде и упаривают до концентрации 0,89 моль/л. Горячий концентрированный маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, 25-ти% водный раствор NH4OH, взятый в 2-х кратном избытке против стехиометрии. Полученный порошок твердого раствора гидрооксидов состава Y2,95Tm0,05Al5O8(OH)4 отфильтровывают на воронке Бюхнера с последующей декантацией дистиллированной водой с добавлением катионного ПАВ - поливинилпирролидона (0,05 мас. % от количества раствора гидроксила аммония). После просушивания в токе горячего воздуха (60-100°С) на распылительной сушилке полученный продукт подвергают механоактивации на планетарной мельнице в среде этанола в течении 40 минут. Этанол из полученной суспензии удаляют в токе горячего воздуха (60°С-100°С) на распылительной сушилке с получением гранул размером 200-300 нм и прокаливают при 1000°С с выдержкой 2 часа. После прокаливания порошок состоит 100% кубического твердого раствора флюоритовой структуры с размером первичных кристаллитов менее 50 нм.

Пример 3. Маточный раствор азотнокислых солей иттрия, алюминия и гольмия квалификации "ОСЧ" состава Y2,99Ho0,01Al5O12 (1,0 ат. % Но3+), растворяют при нагревании в дистиллированной воде и упаривают до концентрации 0,88 моль/л. Горячий концентрированный маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, 25-ти % водный раствор NH4OH, взятый в 2-х кратном избытке против стехиометрии, после чего проводят остальные операции согласно примера 2. После прокаливания порошок состоит 100% кубического твердого раствора флюоритовой структуры с размером первичных кристаллитов менее 40 нм.

Пример 4. Маточный раствор азотнокислых солей иттрия, алюминия и композицию легирующих добавок - азотнокислых солей эрбия и тулия квалификации "ОСЧ" состава Y1,45Er1,5Tm0,05Al5O12 (50,0 ат. % Er3+; 5,0 ат. % Tm3+), растворяют при нагревании в дистиллированной воде и упаривают до концентрации 0,90 моль/л. Горячий концентрированный маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, 25-ти % водный раствор NH4OH, взятый в 2-х кратном избытке против стехиометрии, после чего проводят остальные операции согласно примера 2.

После прокаливания порошок состоит 100% кубического твердого раствора флюоритовой структуры с размером первичных кристаллитов менее 60 нм. (Фиг. 2).

Пример 5. Маточный раствор азотнокислых солей иттрия, алюминия и композицию легирующих добавок - азотнокислых солей эрбия, тулия и гольмия квалификации "ОСЧ" состава Y1,44Er1,5Tm0,05Ho0,01Al5O12 (50,0 ат. % Er3+; 5,0 ат. % Tm3+; 1,0 ат. % Но3+), растворяют при нагревании в дистиллированной воде и упаривают до концентрации 0,92 моль/л. Горячий концентрированный маточный раствор солей сжатым воздухом (при давлении 0,15 ат.) распыляют через капилляр диаметром 1,5 мм в охлажденный до температуры 0°С-2°С, 25-ти % водный раствор NH4OH, взятый в 2-х кратном избытке против стехиометрии, после чего проводят остальные операции согласно примера 2.

После прокаливания порошок состоит 100% кубического твердого раствора флюоритовой структуры с размером первичных кристаллитов менее 65 нм.

Таким образом, заявленный способ низкотемпературного синтеза порошков на основе иттрий - алюминиевого граната, легированного оксидами редкоземельных элементов и их композициями позволяет получать монофазные неагломерированные наноструктурированные порошки (40,0 нм - 65,0 нм) с высокой гомогенностью распределения оксидов редкоземельных элементов в кристаллической решетке алюмоиттриевого граната при удельной поверхности получаемого целевого продукта более 120 м2/г.

Сопоставительный анализ заявляемого изобретения показал, что совокупность существенных признаков заявленного способа получения наноструктурированных порошков твердых растворов на основе алюмоиттриевого граната, солегированного оксидами редкоземельных элементов (ОРЗЭ) не известна из уровня техники и значит, соответствует условию патентоспособности «Новизна».

В уровне техники не было выявлено признаков, совпадающих с отличительными признаками заявленного изобретения и влияющих на достижение заявленного технического результата, поэтому заявленное изобретение соответствует условию патентоспособности «Изобретательский уровень».

Приведенные сведения подтверждают возможность применения заявленного способа для получения наноструктурированных порошков твердых растворов на основе иттрий - алюминиевого граната с оксидами редкоземельных элементов или их композиций, может быть использован в химической промышленности и поэтому соответствует условию патентоспособности «Промышленная применимость».

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с редкоземельными элементами, включающий приготовление маточного раствора, упаривание до концентрированного состояния, совместное обратное соосаждение через распыление маточного раствора с последующим фильтрованием осажденного порошка прекурссора, декантирование, сушку и термообработку при 1000°С, отличающийся тем, что маточный раствор азотнокислых солей иттрия, алюминия и азотнокислые соли редкоземельных элементов Er, Tm, Но или их композиций Er-Tm; Er-Но; Er-Tm-Но в пределах 1,0-50,0 ат.% растворяют в дистиллированной воде при нагревании и упаривают до концентрации 0,88÷0,92 моль/л, распыляют в 25% раствор гидроксида аммония, охлажденный до температуры 0°С-2°С сжатым воздухом через капилляр с обеспечением дробления струи насыщенного маточного раствора до туманообразного состояния, с получением порошка прекурсора YMeAlO(ОН), где Ме=Er, Tm, Но, х=1,5; 0,05; 0,01, соответственно, пульпу декантируют в дистиллированной воде с добавлением 0,05 мас.% поливинилпирролидона от количества раствора гидроксида аммония с обеспечением образования прослоек, препятствующих гидратации и объединению частиц в плотные агломераты, фильтруют, порошки высушивают горячим воздухом при 60°С-100°С на распылительной сушилке и подвергают механоактивации на мельнице вибрационного или планетарного типа во фторопластовых барабанах циркониевыми шарами диаметром 1,0 мм в течение 120 минут в среде этанола при соотношении порошка прекурсора к суммарному количеству циркониевых шаров и этанола, равном 1:6,5; этанол удаляют путем сушки суспензии с получением гранул на распылительной сушилке.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 174.
14.11.2019
№219.017.e17d

Однофазный поликристаллический иттрий-алюминиевый гранат, активированный эрбием, иттербием, и способ его получения

Изобретение относится к области получения керамики на основе иттрий-алюминиевого граната (ИАГ), активированного редкоземельными элементами: эрбием или иттербием, используемой в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных...
Тип: Изобретение
Номер охранного документа: 0002705848
Дата охранного документа: 12.11.2019
16.11.2019
№219.017.e31a

Способ изготовления массивов регулярных субмикронных металлических структур на оптически прозрачных подложках

Изобретение относится к области микро- и нанотехнологии и может быть использовано для изготовления массивов субмикронных структур, используемых в устройствах нанофотоники и наноплазмонной сенсорики для повышения уровня их чувствительности. Способ изготовления массивов регулярных субмикронных...
Тип: Изобретение
Номер охранного документа: 0002706265
Дата охранного документа: 15.11.2019
21.11.2019
№219.017.e3e3

Способ создания противоинфекционной иммунологической защиты к salmonella typhimurium и listeria monocytogenes с помощью трансгенеза т-лимфоцитов

Изобретение относится к области биохимии, в частности к способу адоптиной клеточной терапии для профилактики или лечения инфекционных заболеваний, вызванных S.thyphimurium, L.monocytogenes. Изобретение позволяет эффективно лечить заболевания, вызванные S.thyphimurium, L.monocytogenes. 8 ил., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002706554
Дата охранного документа: 19.11.2019
27.11.2019
№219.017.e6e9

Термоэмиссионный преобразователь для бортового источника электрической энергии

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям, и может быть использовано в составе бортовых источников электрической энергии для летательных аппаратов с прямоточными воздушно-реактивными...
Тип: Изобретение
Номер охранного документа: 0002707192
Дата охранного документа: 25.11.2019
01.12.2019
№219.017.e8da

Способ получения высокостехиометричного наноразмерного прекурсора для синтеза твердых растворов иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, для применения в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии....
Тип: Изобретение
Номер охранного документа: 0002707840
Дата охранного документа: 29.11.2019
01.12.2019
№219.017.e93a

Способ повышения безопасности и эффективности хранения и транспортировки трансплантируемого органа под давлением консервирующей газовой смеси и устройство на его основе

Изобретение относится к биотехнологии, а именно к безопасному хранению и транспортировке трансплантируемого охлажденного сердца животных под давлением консервирующей газовой среды и мобильному устройству для этого. Способ включает подготовку трансплантата к хранению посредством перфузии...
Тип: Изобретение
Номер охранного документа: 0002707532
Дата охранного документа: 27.11.2019
01.12.2019
№219.017.e954

Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростных летательных аппаратов

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов...
Тип: Изобретение
Номер охранного документа: 0002707557
Дата охранного документа: 28.11.2019
12.12.2019
№219.017.ec41

Способ создания противоопухолевой иммунологической защиты к клеткам лимфомы el-4

Изобретение относится к области биохимии, в частности к способу создания противоопухолевой иммунной защиты организма к клеткам лимфомы EL-4. Изобретение позволяет эффективно противостоять клеткам лимфомы EL-4. 1 ил., 3 табл., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002708558
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.eca6

Управляемая пуля

Изобретение относится к области вооружений и может быть использовано в малогабаритных ракетных комплексах. Технический результат – улучшение маневренных свойств управляемой пули и увеличение точности стрельбы. Управляемая пуля содержит бронебойный стержень, стабилизирующие элементы,...
Тип: Изобретение
Номер охранного документа: 0002708772
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed1a

Комплекс вооружения

Комплекс вооружения состоит из пусковой установки, содержащей прицел-прибор наведения и станок пусковой установки с треногой и приводами наведения, управляемую ракету в транспортно-пусковом контейнере. Станок пусковой установки выполнен модульным с изменяемой высотой линии ведения огня,...
Тип: Изобретение
Номер охранного документа: 0002708809
Дата охранного документа: 11.12.2019
Показаны записи 11-17 из 17.
25.08.2017
№217.015.b628

Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния. Способ заключается в смешивании...
Тип: Изобретение
Номер охранного документа: 0002614712
Дата охранного документа: 28.03.2017
19.01.2018
№218.016.0a1f

Алюмооксидная композиция и способ получения керамического материала для производства подложек

Изобретение относится к алюмооксидной композиции и способу получения керамического материала для производства подложек для интегральных микросхем СВЧ-диапазона, причем указанная композиция содержит частицы альфа-оксида алюминия в узком диапазоне 0,7-3 мкм со средним размером частиц 1,54 мкм,...
Тип: Изобретение
Номер охранного документа: 0002632078
Дата охранного документа: 02.10.2017
20.02.2019
№219.016.bd5a

Способ изготовления высокопористых ячеистых керамических изделий

Изобретение относится к области химической технологии высокопористых керамических материалов с сетчато-ячеистой структурой, которые могут использоваться в качестве стационарных носителей блочных катализаторов, фильтров. Техническим результатом изобретения является повышение пористости до 93-95%...
Тип: Изобретение
Номер охранного документа: 0002294317
Дата охранного документа: 27.02.2007
01.03.2019
№219.016.ceb7

Способ получения спеченных изделий на основе нитрида кремния

Изобретение относится к области получения изделий из высокотемпературных конструкционных материалов на основе нитрида кремния, которые могут использоваться в машиностроении, авиации и других высокотехнологических отраслях промышленности. Способ получения спеченных изделий на основе нитрида...
Тип: Изобретение
Номер охранного документа: 0002458023
Дата охранного документа: 10.08.2012
18.05.2019
№219.017.57f3

Композиционный керамический материал для высокотемпературного применения (варианты)

Изобретение относится к керамическому материаловедению, в частности к получению композиционного керамического материала на основе тугоплавких бескислородных и оксидных соединений для применения в условиях, которые требуют высокой прочности, твердости и окислительной стойкости: для изготовления...
Тип: Изобретение
Номер охранного документа: 0002336245
Дата охранного документа: 20.10.2008
17.08.2019
№219.017.c0ea

Способ получения прозрачной высоколегированной er:иаг - керамики

Изобретение относится к области получения высоколегированного ионами эрбия прозрачного керамического материала со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи. Способ включает измельчение полученного методом...
Тип: Изобретение
Номер охранного документа: 0002697561
Дата охранного документа: 15.08.2019
21.03.2020
№220.018.0ec6

Неорганический поликристаллический сцинтиллятор на основе sc, er:иаг и способ его получения

Настоящее изобретение относится к области прозрачных керамических материалов со структурой иттрий-алюминиевого граната, легированного ионами эрбия и скандия кубической структуры Er:ИАГ(Sc), обладающих свойствами для использования в качестве люминесцентных сцинтилляционных материалов,...
Тип: Изобретение
Номер охранного документа: 0002717158
Дата охранного документа: 18.03.2020
+ добавить свой РИД