×
25.01.2019
219.016.b41a

Результат интеллектуальной деятельности: Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их поверхностных слоев. Изобретение также может использоваться в химической промышленности. Способ заключается в том, что на стальную поверхность методом сверхзвукового холодного газодинамического напыления наносится порошок чистого алюминия фракцией 20-60 мкм. В качестве рабочего газа используется воздух. На образовавшийся алюминиевый первый слой методом сверхзвукового холодного газодинамического напыления наносят композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% наноразмерными частицами корунда фракцией до 100 нм. В качестве рабочего газа используется воздух. При напылении образуются скопления нанокорунда, которые заполняют поры покрытия. Далее образовавшийся алюминиевый упрочненный второй слой, имеющий пористость не более 5% от объема, подвергается микродуговому оксидированию в силикатно-щелочном электролите следующего состава: силикат натрия - 9 г/л, гидроксид калия - 2 г/л, остальное - вода. Продолжительность микродугового оксидирования составляет 1-1,5 часа, образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда с открытой пористостью не более 7%. Данный способ позволяет уменьшить количество операций при формировании керамоматричного покрытия. Поверхность полученного керамоматричного покрытия имеет микротвердость 15-20 ГПа, адгезия покрытия к металлической основе не менее 50 МПа. При взаимодействии поверхности с агрессивной средой при температурах 400-600°С внешний МДО-слой и упрочненный алюминиевый второй слой с наночастицами корунда обеспечивают защиту керамоматричного покрытия от разрушения и создает необходимые условия для формирования интерметаллидного слоя Al-Fe с пористостью не более 2% от объема на всю толщину первого алюминиевого подслоя, вследствие активно протекающей диффузии на границе «подложка-покрытие». При этом адгезия покрытия к стали ухудшается не более чем на 5%. Интерметаллидный первый слой Al-Fe защищает сталь от взаимодействия с агрессивной средой, в случае ее частичного проникновения в поры износостойкого внешнего и второго слоя керамоматричного покрытия. 4 з.п. ф-лы, 2 пр.

Изобретение относится к области создания защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах (припои, печные газы, жидкометаллические среды) при температурах контактного взаимодействия 400-600°С, за счет изменения состава и структуры их поверхностных слоев. Так же изобретение относится к области материаловедения и химической промышленности.

Известно композиционное покрытие для защиты от коррозии металлических прокалочных опок в литейном производстве и трубопроводов (пат. RU 2355725 С2, C09D 1/02, C09D 5/8, опубл. 2009 г.). В составе покрытия в качестве наполнителя используется алюминиевый порошок, а в качестве связующего материала - жидкое стекло с плотностью 1,40-1,145 г/см3 и модулем 2,85-3,05 ед. или его водный раствор с плотностью 1,12-1,18 г/см3 и тем же модулем при следующем соотношении компонентов, мас. %: алюминиевый порошок 53,6-68,4 и связующее 46,4-31,6. Указанное покрытие не обеспечивает защиту металлических поверхностей от высокотемпературной коррозии при температурах более 500°С, что является главным недостатком. Покрытие деформируется, разрушается, осыпается с защищаемой металлической поверхности и открывает доступ к ней агрессивных печных газов.

Известен способ (RU 1772215 A1, С23С - 010/22, опубл. 1992 г.) насыщения поверхностных слоев стального изделия никелем из легкоплавких растворов. Нанесение покрытий осуществляется путем выдержки стального изделия в легкоплавком свинцовом расплаве, содержащем 0,5-0,8% лития и 3% никеля. В результате происходит адсорбция никеля на его поверхности и последующая диффузия никеля вглубь поверхностных слоев. Никель образует с железом твердые растворы, на поверхности изделия образуется диффузионное покрытие, представляющее собой сплав железа и никеля. Такое покрытие обладает высокой коррозионной стойкостью. Однако образующиеся покрытия являются хрупкими, склонны к растрескиванию, разрушению и износу при термомеханическом воздействии внешней среды.

Известны способы (Material Behavior and Physical Chemistry in Liquid Metal Systems./Ed. by H.U. Borstedt. New York: Plenum Press, 1982, p. 253-264) защиты металлов от коррозии, заключающиеся в том, что на поверхность сталей наносят керамические коррозионностойкие покрытия на основе нитридов и боридов титана, циркония, карбидов вольфрама, алюмо-магниевой шпинели. Покрытия формируют путем плазменного напыления. При этом предполагается, что создание керамических покрытий предотвратит коррозионное разрушение матрицы металлов в процессе эксплуатации при повышенных температурах. К недостаткам способов следует отнести формирование тонких покрытий, которые могут разрушиться, вследствие циклических термомеханических напряжений при продолжительном коррозионном воздействии, из-за существенной разницы коэффициентов термического расширения (КТР) на ярко выраженной границе раздела «керамика-металл».

Известен вариант (пат. RU 2206632 С2, С22С 38/50, С22С 38/58, В32В 15/18, опубл. 2003 г.) использования двухслойной плакированной стали с высокой коррозионной стойкостью внешнего слоя по отношению к агрессивным высокотемпературным внешним средам. Однако применение биметалла является технологически сложной, трудоемкой и дорогостоящей задачей, так как стальные конструкции могут включать в себя большое количество сварных соединений.

Коррозионностойкое покрытие на стальной основе (RU 90440 U1, С23С 28/00, C25D 11/02, опубл. 2011 г.) формируют плазменным напылением алюминия, затем проводят микродуговое оксидирование (МДО). Толщина алюминиевого слоя, который не подвергся оксидированию, составляет 35-65 мкм. При этом пористость предварительно наносимого слоя алюминия составляет до 10%. Недостатки способа заключаются в том, что плазменное напыление алюминия приводит к образованию пористого покрытия. Агрессивная среда, при контакте с поверхностью, может проникать в сталь через сквозные поры оксидированного и алюминиевого слоя, что приводит к коррозии. Так же при температурах контактного взаимодействия 400-600°С на границе «покрытие-сталь» активно протекают процессы диффузии алюминия в железо, что может привести к формированию интерметаллидов системы «алюминий-железо» на толщину алюминиевого слоя, который не подвергся оксидированию. Результатом станет охрупчивание покрытия из-за ухудшения адгезии на границе «интерметаллидный слой-керамика».

Наиболее близким решением к предлагаемому способу можно считать формирование антикоррозионного покрытия на стали (пат. RU 2455392 С1, С23С 28/04, опубл. 2011 г.) для работы в высокотемпературных агрессивных средах, которое взято за прототип. Покрытие содержит адгезионный слой и защитный слой. Адгезионный слой выполнен из циркония. Защитный слой состоит из внутреннего и наружного подслоев. Внутренний слой, состоит из двух подслоев, один из которых выполнен из нитрида циркония и нанесен на адгезионный слой методом ионно-плазменного напыления, а второй подслой образован из оксида циркония путем химико-термической обработки поверхности подслоя нитрида циркония. Наружный слой выполнен из материала на основе легкоплавкого вольфрамового стекла.

Покрытие, приведенное в качестве прототипа, обеспечивает хорошую защиту. К недостаткам прототипа можно отнести следующие:

- высокая трудоемкость процесса получения покрытия, который представляет собой совокупность трех технологических операций: ионно-плазменного напыления, химико-термической обработки поверхности, нанесения вольфрамового стекла;

- невозможность регулирования толщины покрытия в широком диапазоне, так как метод ионно-плазменного напыления позволяет получать тонкослойные металлические и керамические покрытия ограниченной толщины в диапазоне от одного до нескольких микрометров;

- адгезионный слой вольфрама по КТР значительно отличается от стальной подложки и от оксида циркония, что неизбежно приводит к возникновению на границе слоев при нагреве термических напряжений, которые могут вызвать расслоение и последующее разрушение покрытия;

- защитный слой покрытия имеет низкие прочностные характеристики, вследствие чего подвержен износу в результате термомеханического воздействия со стороны агрессивных сред;

- описанные методы нанесения слоев предполагают формирование покрытий, обладающих некоторой пористостью. Через поры агрессивная среда может проникать в стальную подложку, образовывая очаги коррозии. Не произведена оценка влияния пористости отдельных слоев на антикоррозионные свойства покрытия.

Техническим результатом изобретения является создание коррозионностойкого керамоматричного покрытия на стали в широком диапазоне толщин от 100 мкм до 5 мм, обладающего низкой пористостью, имеющего в своем составе алюминиевый слой, переходящий в интерметаллид системы «алюминий-железо»; упрочненный металлокерамический слой, и основной прочный корундовый слой. Наличие данных переходных диффузионных слоев обеспечивает высокую адгезию покрытия и обеспечивает плавное изменение коэффициента термического расширения по толщине покрытия при воздействии агрессивных сред при температурах до 600°С. Формирование керамоматричного покрытия осуществляется двумя последовательными технологическими операциями: холодным газодинамическим напылением (ХГДН) и микродуговым оксидированием.

Для достижения поставленной цели, использовался способ ХГДН. Благодаря сверхзвуковому потоку газа, скорость частиц составляет порядка 600 м/с. В результате интенсивной пластической деформации при ударе, частицы закрепляются на подложке в твердом состоянии и при температуре, значительно ниже температуры плавления распыляемого материала.

Технический результат достигается за счет того, что способом ХГДН наносят два алюминиевых слоя. При нанесении алюминиевого первого слоя используется порошок чистого алюминия фракцией 20-60 мкм. При нанесении упрочненного алюминиевого второго слоя используется композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% частицами корунда размером до 100 нм.

Установлено, что частицы размером 20-60 мкм имеют достаточную кинетическую энергию для закрепления на подложке. При использовании порошка фракцией более 50 мкм формируемое покрытие не обладает высокой адгезионной прочностью. Частицы корунда размером 50-60 мкм в составе композиционного порошка при попадании на напыляемую металлическую поверхность отлетают от нее, очищая ее при этом от загрязнений, и далее таким же образом устраняют оксидный слой только что сформированного алюминиевого покрытия, тем самым, значительно повышая его когезию.

Установлено, что армирование порошка алюминия фракцией 20-60 мкм свыше 50% наноразмерными частицами корунда приводит к образованию композиционного порошка конгломератного типа. Армирование достигается при помощи обработки смеси порошков в планетарной мельнице.

При этом в составе армированного порошка алюминия имеются свободные частицы нанокорунда. В результате значительно повышаются функциональные свойства покрытия, такие как твердость и износостойкость.

В процессе напыления эти частицы частично заполняют образующиеся поры, в результате чего пористость образующегося слоя не превышает 5 об.%.

В соответствии с предлагаемым изобретением, в качестве рабочего газа в процессе ХГДН используется воздух.

Процесс МДО проводится в силикатно-щелочном электролите силикат натрия - 2-15 г/л, гидроксид калия - 1-4 г/л, остальное - вода.

Продолжительность микродугового оксидирования составляет 1-1,5 часа. В результате образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда, который имеет микротвердость в диапазоне 15-20 ГПа и обладает открытой пористостью не более 7%.

Установлено, что при взаимодействии покрытия с агрессивной средой при температурах 400-600°С происходит образование интерметаллидного слоя системы «алюминий-железо» с пористостью не более 2% от объема на толщину, соответствующую толщине алюминиевого первого слоя. Дальнейшее замедление диффузии вызвано естественным снижением химического потенциала, а так же наличием барьерного, насыщенного нанокорундом упрочненного алюминиевого слоя. Образующийся интерметаллидный слой понижает адгезию керамоматричного покрытия не более чем на 5%, адгезия покрытия к стали составляет не менее 50 МПа.

Пример 1.

Для получения защитного керамоматричного покрытия подготовлены образцы из стали марки Ст.3 в виде плоских пластин размером 50×20×0,4 мм.

На поверхность образцов методом ХГДН с использованием робота равномерно напыляли на толщину 200 мкм порошок чистого алюминия фракцией 30-50 мкм. В качестве рабочего газа использовался воздух. На образовавшийся слой методом ХГДН на толщину 400 мкм напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 50-60 мкм, армированного на 70% частицами корунда фракцией до 100 нм. Далее образовавшийся внешний слой подвергался процессу МДО в силикатно-щелочном электролите состава: силикат натрия - 6 г/л, гидроксид калия - 3 г/л, остальное - вода. Длительность процесса МДО составляла 1 час, при этом формировался оксидный слой внутрь упрочненного алюминиевого слоя на толщину 80 мкм.

Полученное керамоматричное покрытие имеет микротвердость порядка 16 ГПа. Открытая пористость МДО-слоя составляет не более 7%, пористость алюминиевого упрочненного слоя не более 3% от общего объема, адгезия покрытия к металлической основе не менее 50 МПа.

На образцах проводили коррозионные испытания, посредством их выдержки в печи в керамическом тигле с расплавленным припоем марки ПОС-10, в состав которого входит 10% олова и 90% свинца. Температура расплава составила 500°С, время выдержки в печи в воздушной среде составило 3000 часов.

Исследование коррозионной стойкости покрытий образцов проводилось методом визуализации на электронном растровом микроскопе в их поперечных шлифах. Отмечено, что формирование МДО-слоя приводит к сохранению целостности покрытия после испытаний. Наблюдается проникновение расплава припоя через сквозные поры оксидной керамики, скопления металла задерживаются в армированном нанокорундом алюминиевом втором слое с низкой пористостью и не проходят вглубь покрытия, очаги коррозии отсутствуют. Обнаружено формирование дополнительного защитного интерметаллидного слоя системы «алюминий-железо» в покрытии.

Пример 2.

Для получения защитного керамоматричного покрытия подготовлены образцы из стали марки Ст.3 в виде плоских пластин размером 50×20×0,4 мм.

На поверхность образцов методом ХГДН с использованием робота равномерно напыляли на толщину 200 мкм порошок чистого алюминия фракцией 30-50 мкм. В качестве рабочего газа использовался воздух. На образовавшийся слой методом ХГДН на толщину 400 мкм напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 50-60 мкм, армированного на 70% частицами корунда фракцией до 100 нм. Далее образовавшийся внешний слой подвергался процессу МДО в силикатно-щелочном электролите состава: силикат натрия - 6 г/л, гидроксид калия - 3 г/л, остальное - вода. Длительность процесса МДО составляла 1,5 часа, при этом формировался оксидный слой внутрь упрочненного алюминиевого слоя на толщину 120 мкм.

Полученное керамоматричное покрытие имеет микротвердость порядка 18 ГПа. Открытая пористость МДО-слоя составляет не более 7%, пористость алюминиевого упрочненного слоя не более 3% от общего объема, адгезия покрытия к металлической основе не менее 50 МПа.

На образцах проводили коррозионные испытания, посредством их выдержки в печи в керамическом тигле с расплавленным припоем марки ПОС-40, в состав которого входит 40% олова и 60% свинца. Температура расплава составила 500°С, время выдержки в печи в воздушной среде составило 3000 часов.

Исследование коррозионной стойкости покрытий образцов проводилось методом визуализации на электронном растровом микроскопе в их поперечных шлифах. Отмечено, что формирование МДО-слоя приводит к сохранению целостности покрытия после испытаний. Наблюдается проникновение расплава припоя через сквозные поры оксидной керамики, скопления металла задерживаются в армированном нанокорундом алюминиевом втором слое с низкой пористостью и не проходят вглубь покрытия, очаги коррозии отсутствуют. Обнаружено формирование дополнительного защитного интерметаллидного слоя системы «алюминий-железо» в покрытии.

Источники информации

1. Патент 2355725 С2 (RU) 20.05.09.

2. Патент 1772215 A1 (RU), 30.10.92.

3. Material Behavior and Physical Chemistry in Liquid Metal Systems./Ed. by H.u. Borstedt. New York: Plenum Press, 1982, p. 253-264.

4. Патент 2206632 C2 (RU), 20.06.03.

5. RU 90440 U1, 10.12.11.

6. Патент 2455392 C1 (RU), 10.07.11.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 25.
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e127

Способ микродугового оксидирования прутков из титановой проволоки для выполнения износостойких наплавок

Изобретение относится к области гальванотехники и может быть использовано для микродугового оксидирования (МДО) сварочной проволоки из титановых сплавов, применяемой при изготовлении изделий судовой арматуры и механизмов, изделий химического машиностроения и др. Способ МДО прутков из титановой...
Тип: Изобретение
Номер охранного документа: 0002625516
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.1345

Литейный сплав на основе титана

Изобретение относится к области цветной металлургии, в частности к свариваемым литейным сплавам на основе титана, и предназначено для изготовления фасонных отливок, используемых в ответственных сварно-литых конструкциях энергомашиностроения при температуре до 450°С. Литейный свариваемый сплав...
Тип: Изобретение
Номер охранного документа: 0002634557
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1400

Износостойкий сплав для высоконагруженных узлов трения

Изобретение относится к износостойким сплавам для высоконагруженных узлов трения. Сплав включает связующую матрицу эвтектического состава в количестве от 24,8 до 26,8 мас.% от массы сплава и карбонитрид титана TiCN. Матрица эвтектического состава состоит из никеля, вольфрама, молибдена, хрома,...
Тип: Изобретение
Номер охранного документа: 0002634566
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
28.07.2018
№218.016.7606

Аустенитная жаропрочная и коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002662512
Дата охранного документа: 26.07.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
20.02.2019
№219.016.bc14

Носитель катализатора на металлической основе

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой...
Тип: Изобретение
Номер охранного документа: 0002680144
Дата охранного документа: 18.02.2019
01.06.2019
№219.017.7211

Способ производства поковок из штамповых сталей типа 5хнм

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%. Затем осуществляют ковку, при которой перед первым выносом слиток нагревают...
Тип: Изобретение
Номер охранного документа: 0002690084
Дата охранного документа: 30.05.2019
Показаны записи 1-10 из 84.
27.02.2013
№216.012.2b51

Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического...
Тип: Изобретение
Номер охранного документа: 0002476616
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b5c

Способ нанесения покрытий на титан и его сплавы методом электроискрового легирования в водных растворах при повышенных давлениях

Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике. Способ включает микродуговое оксидирование (МДО) в электролите в герметичном сосуде путем...
Тип: Изобретение
Номер охранного документа: 0002476627
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.6084

Способ брикетирования металлической стружки

Изобретение относится к области брикетирования металлической стружки и может быть использовано преимущественно при изготовлении брикет-электродов для электрошлакового переплава (ЭШП). Металлическую стружку дробят до получения элементов двух фракций, смешивают фракции, осуществляют очистку смеси...
Тип: Изобретение
Номер охранного документа: 0002490340
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6aab

Способ изготовления заготовки обечайки активной зоны корпуса реактора типа ввэр

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков. Толщина стенки заготовки превышает толщину стенки...
Тип: Изобретение
Номер охранного документа: 0002492958
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7a16

Система защиты от эрозионно-коррозионного разрушения корпусов морских судов и сооружений

Изобретение относится к системам защиты от эрозионно-коррозионного разрушения подводной поверхности корпусов морских судов, морских сооружений освоения шельфа замерзающих морей, например морских стационарных и плавучих буровых платформ, и может быть использовано в другой морской технике,...
Тип: Изобретение
Номер охранного документа: 0002496916
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.8378

Способ создания пористого покрытия на металлическом электропроводящем носителе

Изобретение относится к способам создания пористых материалов для альтернативных источников энергии и может быть использовано в производстве химических водоактивируемых источников тока, систем очистки и опреснения воды, комплексов промышленной экологии. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002499332
Дата охранного документа: 20.11.2013
20.08.2014
№216.012.eaa4

Сплав на основе меди

Изобретение относится к прецизионным сплавам на основе меди для получения микро- и нанопроводов, а также тонких пленок и покрытий с отрицательным температурным коэффициентом сопротивления (ТКС). Сплав содержит, мас.%: марганец 18,0-22,0; никель 18,0-25,0; кремний 2,0-4,0; бор 1,5-4,0; германий...
Тип: Изобретение
Номер охранного документа: 0002525876
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f119

Сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением

Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением. Сплав содержит, мас.%: хром 18,0-40,0, молибден 30,0-40,0, алюминий 0,45-0,63, цирконий 4,5-6,4, карбид...
Тип: Изобретение
Номер охранного документа: 0002527543
Дата охранного документа: 10.09.2014
+ добавить свой РИД