×
06.09.2019
219.017.c806

Результат интеллектуальной деятельности: Термоядерный реактор

Вид РИД

Изобретение

Аннотация: Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого с помощью входного коллектора и отводимого с помощью выходного коллектора. Входной и выходной коллекторы выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры, по оси торцевых сторон выполнены скользящие и изолированные металлические вводы каналов подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры и формирование первичного плазменного шнура. С внешней стороны вакуумной камеры размещены СВЧ-излучатели, осуществляющие разогрев лития в пористом материале на внутренней поверхности вакуумной камеры, и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, опирающейся на роликовые подшипники, обеспечивающие вращение камеры. Техническим результатом является регулирование тепловой мощности реактора, повышение стабильности плазменного шнура и увеличение его температуры. 3 ил.

Изобретение относится к ядерной физике, а именно, к устройствам для осуществления термоядерных реакций синтеза и может быть использовано для получения электрической энергии.

Известен термоядерный реактор (Грачев Л.П. Есаков И.И. Мишин Г.И. Ходатаев К.В. Возможность осуществления термоядерного синтеза в резонансном стримерном СЧ-разряде высокого давления. Российская АН, Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, 1992, препринт N 1577, с. 50), включающий камеру, заполненную под давлением газом, например водородом, систему подачи текучего теплоносителя, размещенную вне упомянутой камеры, текучий теплоноситель, выходящий из упомянутой системы и входящий в преобразователь энергии, который установлен вне ранее указанной камеры, двухзеркальный открытый СВЧ-резонатор, помещенный во внутрь камеры, причем зеркала СВЧ-резонатора установлены на расстоянии от внутренних стен камеры, которая выполнена прямоугольной формы и концентрично расположена внутри другой камеры, а зазор между ними заполнен текучим теплоносителем.

Недостатком известного устройства является нестабильность плазменного облака и высокая скорость его остывания, обусловленная потерями энергии через излучение.

Наиболее близким по технической сущности является термоядерный реактор (Патент РФ 2076358, заявка №94021126/25), МПК G21B 1/00, оп. 27.03.1997), содержащий, вакуумную камеру, выполненную в виде полого цилиндра, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего вакуумную камеру теплоносителя Внутренняя поверхность камеры образована двумя теплопроводными змеевиками, у которых вход и выход выполнены раздельными. Причем вход змеевика выходит из камеры со стороны зеркала СВЧ-резонатора, а входная часть этого змеевика охватывает тыльную сторону упомянутого зеркала. Вход другого змеевика выходит из камеры со стороны второго зеркала СВЧ-резонатора, а входная часть этого же змеевика охватывает тыльную сторону уже второго зеркала и соответствующий составной элемент СВЧ-резонатора. Кроме того, входы змеевиков соединены с системой подачи теплоносителя, которым заполнены указанные змеевики.

Недостатком известного устройства является отсутствие систем удержания плазменного облака в центре вакуумной камеры, что при подвижности плазменного облака повышает вероятность контактов плазмы со стенками камеры и, как следствие, ее остывание и загрязнение, кроме того тепловое излучение плазмы интенсивно поглощается холодными стенками камеры, что приводит к дополнительному ее остыванию.

Технической задачей является обеспечение возможности регулирования тепловой мощности реактора.

Технический результат заключается в повышении стабильности плазменного шнура, увеличение его температуры.

Это достигается тем, что в известный термоядерный реактор, содержащий вакуумную камеру, выполненную в виде полого цилиндра, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы теплоносителя охлаждающего вакуумную камеру, причем вакуумная камера, внутренняя поверхность которого выстлана пористым материалом, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого в каналы с помощью входного коллектора и отводимого из каналов с помощью выходного коллектора, входной и выходной коллекторы выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры, по оси торцевых сторон выполнены скользящие и изолированные вводы каналов подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры и формирование первичного плазменного шнура, с внешней стороны вакуумной камеры размещены СВЧ-излучатели, осуществляющие разогрев лития в пористом слое на внутренней поверхности вакуумной камеры, и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, которая опирается на роликовые подшипники, закрепленные на корпусе реактора и обеспечивающие возможность вращения камеры вокруг продольной оси и препятствующие продольному ее перемещению, с помощью электродвигателя и шестеренчатой пары вакуумная камера осуществляет вращение вокруг продольной оси.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена функциональная схема термоядерного реактора, на фиг. 2 изображен продольный разрез вакуумной камеры, а на фиг. 3 изображен поперечный разрез вакуумной камеры.

Термоядерный реактор содержит вакуумную камеру 1, каналы 2 и 3 подачи газообразных реагентов в камеру 1, входной и выходной коллекторы 4 и 5 охлаждающего вакуумную камеру 1 теплоносителя, причем вакуумная камера 1 выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом 6, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы 7 для охлаждающего теплоносителя, подаваемого в каналы 7 с помощью входного коллектора 4 и отводимого из каналов 7 с помощью выходного коллектора 5, входной и выходной коллекторы 4 и 5 выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры 1, по оси торцевых сторон выполнены скользящие и изолированные металлические вводы каналов 2 и 3 подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры 1 и формирование первичного плазменного шнура 8, с внешней стороны вакуумной камеры 1 размещены СВЧ-излучатели 9 и 10, осуществляющие разогрев лития в пористом материале 6 на внутренней поверхности вакуумной камеры 1, и магнитные системы 11 и 12, линии магнитного поля которых проникают внутрь вакуумной камеры 1 и формируют воздействие на плазменный шнур 8 в сторону оси цилиндрической вакуумной камеры 1, опирающейся на роликовые подшипники 13, закрепленные на корпусе реактора и обеспечивающие вращение камеры 1 вокруг продольной оси и препятствующие продольному ее перемещению, при этом электродвигателем 14 и шестеренчатой парой 15 вакуумная камера 1 приводится во вращение вокруг продольной оси.

Термоядерный реактор работает следующим образом.

Рабочий цикл реактора начинается с включения электродвигателя 14 и приведением во вращение вокруг продольной оси цилиндрической вакуумной камеры 1. Одновременно с помощью СВЧ-нагревателей 9 и 10 осуществляется разогрев лития в пористом материале 6. После расплавления лития он равномерно за счет вращения вакуумной камеры и воздействия центробежных сил распределяется по объему пористого материала 6, образуя цилиндрический отражатель. После того как будет сформирована поверхность отражателя, в вакуумную камеру 1 по каналу 2, имеющим вращающееся уплотнение, подается смесь газообразных реагентов, например, смесь водорода, дейтерия и трития, и при подаче высокого постоянного напряжения к изолированным вводам каналов 2 и 3 происходит пробой в смеси газов и формирование первичного, так как начальная температура в шнуре недостаточна для осуществления реакции синтеза, плазменного шнура в вакуумной камере.

Следующий этап работы реактора заключается в постепенном повышении температуры в плазменном шнуре, что реализуется за счет омического нагрева шнура подведенным к вводам каналов 2 и 3 постоянным напряжением. Термодинамическое состояние плазмы, находящейся в разряженной газовой среде, определяется только потерями энергии от излучения. Поскольку плазменный шнур находится в центре цилиндрического зеркала, то большая часть теплового излучения от шнура возвращается ему же. Такой способ условной теплоизоляции позволяет создать предпосылки для быстрого повышения температуры в плазменном шнуре до температур начала реакций синтеза.

Стабильность плазменного шнура обеспечивается двумя или более магнитными системами 11 и 12, расположенными вне камеры 1. Магнитное поле проникает внутрь камеры 1 и на токопроводящий плазменный шнур по правилу левой руки оказывает воздействие, направленное к оси цилиндрической камеры. Если учесть, что камера 1 вращается вокруг своей оси, то отклонение плазменного шнура в любую сторону от осевого положения будет скорректировано магнитными системами. Магнитные системы выполняют функцию ручного отжима - скручивают и сдавливают плазменный шнур. Стабилизации плазменного шнура непосредственно влияют на повышения температуры шнура. В связи с тем, что фиксация плазменного шнура в фокусе цилиндрического отражателя позволяет вернуть шнуру значительную часть излученной шнуром энергии и, тем самым, при подводе энергии к шнуру добиться повышения его температуры.

При достижении температур ядерного синтеза в вакуумной камере в плазменном шнуре происходит слияние ядер газообразных реагентов с выделением огромного количества тепла. Контролировать тепловыделение можно двумя путями. Во-первых, задавая концентрацию дейтерия и трития в вакуумной камере 1, и, во-вторых, управляя условиями, необходимыми для существования реакций синтеза. Один из вариантов второго направления заключается в управлении продолжительностью реакции синтеза. Если начало реакции определяется многими факторами и является по сути случайным, фиксируемым скачком теплового излучения, то окончание однозначно определяется снятием постоянного напряжения с изолированных вводов 2 и 3. При этом по плазменному шнуру перестает протекать ток и перестают действовать силы, сдавливающие плазменный шнур. Расширяясь, плазма выбрасывается на литиевое покрытие внутренней стенки камеры, испаряя часть лития и естественно охлаждаясь. Эти факторы: уменьшение концентрации и снижение температуры, неизбежно вызывают срыв реакции синтеза. Такой время-импульсный принцип работы реактора позволяет контролировать его тепловую мощность в требуемых пределах.

Повышение стабильности плазменного шнура достигается за счет вращения в магнитном поле цилиндрической вакуумной камеры 1 вокруг продольной оси и создания постоянного тока в плазменном шнуре.

Повышение температуры плазменного шнура достигается за счет удержания шнура на оси цилиндрической камеры и в фокусе цилиндрического отражателя, обеспечивая возврат большей части теплового излучения назад плазменному шнуру.

Импульсный принцип работы реактора позволяет контролировать его тепловую мощность в требуемых пределах.

Использование изобретения позволяет обеспечить регулирование тепловой мощности реактора, при этом повысить стабильность плазменного шнура и увеличить его температуру.

Термоядерный реактор, содержащий вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы теплоносителя, охлаждающего вакуумную камеру, отличающийся тем, что вакуумная камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом, смачиваемым расплавленным литием, и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого в каналы с помощью входного коллектора и отводимого из каналов с помощью выходного коллектора, по оси торцевых сторон выполнены скользящие и изолированные вводы каналов подачи газообразных реагентов, к которым приложено постоянное напряжение, вызывающее пробой газового наполнения вакуумной камеры и формирование первичного плазменного шнура, с внешней стороны вакуумной камеры размещены СВЧ-излучатели для разогрева лития в пористом слое на внутренней поверхности цилиндрической вакуумной камеры и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, которая установлена на роликовые подшипники, закрепленные в реакторе и обеспечивающие вращение вакуумной камеры вокруг продольной оси, с помощью электродвигателя и шестеренчатой пары цилиндрическая вакуумная камера приводит вращение вокруг продольной оси.
Термоядерный реактор
Термоядерный реактор
Термоядерный реактор
Источник поступления информации: Роспатент

Показаны записи 91-100 из 208.
18.07.2018
№218.016.71da

Гибридная аэс с дополнительной высокотемпературной паровой турбиной

Изобретение относится к области атомной теплотехники. Гибридная АЭС содержит последовательно соединенные ядерный реактор, низкотемпературный реакторный парогенератор, низкотемпературную паровую турбину с сепаратором-пароперегревателем, конденсатор, конденсатный насос, регенеративные...
Тип: Изобретение
Номер охранного документа: 0002661341
Дата охранного документа: 16.07.2018
19.07.2018
№218.016.72db

Универсальный термогидравлический распределитель

Универсальный термогидравлический распределитель содержит цилиндрический корпус 1, выполненный в виде распределяющего коллектора 2 и собирающего коллектора 3 идентичных диаметров D1. Распределяющий коллектор 2 содержит патрубок для подключения подающего трубопровода источника 4 диаметром D2 и...
Тип: Изобретение
Номер охранного документа: 0002661578
Дата охранного документа: 17.07.2018
24.07.2018
№218.016.7410

Способ управления трехфазным инвертором напряжения по мостовой схеме

Изобретение относится к области электротехники и может быть использовано при построении трехфазных инверторов напряжения (ТИН) централизованного типа для питания трехфазной и однофазной нагрузок. Техническим результатом является повышение КПД. В способе управления трехфазным инвертором...
Тип: Изобретение
Номер охранного документа: 0002661938
Дата охранного документа: 23.07.2018
26.07.2018
№218.016.7504

Цифровой измеритель статистических характеристик случайных сигналов

Изобретение относится к области радиотехники и измерительной техники. Технический результат заключается в обеспечении непрерывного цифрового измерения среднего значения и дисперсии случайных сигналов с высокой точностью при минимальном числе необходимых арифметических операций. Технический...
Тип: Изобретение
Номер охранного документа: 0002662412
Дата охранного документа: 25.07.2018
17.08.2018
№218.016.7c7b

Охлаждаемая лопатка соплового аппарата газовой турбины

Охлаждаемая лопатка соплового аппарата газовой турбины содержит полое перо 1, выполненное в виде передней полости 2 и задней полости 3, разделенных радиальной перегородкой 4. В передней полости 2 установлен передний дефлектор 5, закрепленный первыми поперечными ребрами 6 на стенках полого пера...
Тип: Изобретение
Номер охранного документа: 0002663966
Дата охранного документа: 13.08.2018
25.08.2018
№218.016.7f98

Резонансный способ ультразвуковой толщинометрии

Использование: для толщинометрии образцов материалов и изделий. Сущность изобретения заключается в том, что на поверхности контролируемого объекта в точке регистрации устанавливают приемный преобразователь, в основной точке возбуждения по поверхности контролируемого объекта импактором...
Тип: Изобретение
Номер охранного документа: 0002664785
Дата охранного документа: 22.08.2018
28.08.2018
№218.016.800b

Способ управления автоматической частотной разгрузкой в силовой распределительной сети электроснабжения

Изобретение относится к области электротехники. Способ управления автоматической частотной разгрузкой (АЧП) в силовой распределительной сети электроснабжения позволяет достичь технического результата, заключающегося в повышении качественного управления АЧР с учетом динамики изменения...
Тип: Изобретение
Номер охранного документа: 0002665033
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8017

Система электропитания

Изобретение относится к области электротехники, а именно силовой преобразовательной техники. Технический результат заключается в повышении точности стабилизации напряжения на выходных выводах преобразователя системы питания и достигается за счет того, что система электропитания содержит блок...
Тип: Изобретение
Номер охранного документа: 0002665030
Дата охранного документа: 27.08.2018
29.08.2018
№218.016.806e

Бестопливная тригенерационная установка

Изобретение относится к теплоэнергетике. Между газопроводами высокого и низкого давления включены первый дроссель, детандер с электрогенератором, соединенным с потребителем и двигателем компрессора, первый теплообменник на линии подачи газа, компрессор, вход которого соединен с выходом...
Тип: Изобретение
Номер охранного документа: 0002665195
Дата охранного документа: 28.08.2018
01.09.2018
№218.016.81ae

Способ определения температуры стеклования

Изобретение относится к области измерений и может быть использовано для исследования теплофизических характеристик электроизоляционных материалов. Согласно предложенному способу определения температуры стеклования проводят серии испытаний вдавливанием индентора в поверхность испытуемого...
Тип: Изобретение
Номер охранного документа: 0002665500
Дата охранного документа: 30.08.2018
Показаны записи 31-35 из 35.
18.05.2019
№219.017.5666

Устройство для контроля металлотермической реакции восстановления титана

Изобретение относится к устройствам для контроля металлотермической реакции восстановления металла и может быть использовано в системах управления технологическими процессами в металлургической промышленности. В качестве датчиков индуцированного магнитного поля используются витки нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002393438
Дата охранного документа: 27.06.2010
23.07.2019
№219.017.b7ed

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Изобретение относится к средствам отвода остаточного тепла от конструкций ядерно-энергетических установок при тяжелых авариях (ТА), подвергающихся высокоинтенсивному тепловому воздействию от расплавленных материалов активной зоны. Изобретение может быть использовано в системах аварийного отвода...
Тип: Изобретение
Номер охранного документа: 0002695128
Дата охранного документа: 22.07.2019
23.07.2019
№219.017.b7f5

Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления

Группа изобретений относится к ядерной энергетике. Способ охлаждения корпуса ядерного реактора при тяжелой аварии (ТА) заключается в том, что систему охлаждения корпуса ядерного реактора оснащают группой распыливающих устройств, которая при возникновении аварийной ситуации подает путем...
Тип: Изобретение
Номер охранного документа: 0002695129
Дата охранного документа: 22.07.2019
03.07.2020
№220.018.2db1

Охлаждаемая стенка токамака

Изобретение относится к охлаждаемой стенке токамака. Стенка содержит поверхность приема теплового потока [1] и прилегающую к ней теплопроводящую зону [2], совместно с кожухом [3] образующую полость сбора пара, игольчатые теплопроводящие элементы [4], расположенные перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002725161
Дата охранного документа: 30.06.2020
31.07.2020
№220.018.3989

Охлаждаемая стенка реактора высокотемпературных процессов

Изобретение относится к охлаждаемой стенке реактора высокотемпературных процессов, к области металлургии, ракетному двигателестроению, системам аварийного охлаждения атомных реакторов и, в частности, диверторам, лимитерам и бланкетам термоядерных реакторов типа токамак. Охлаждаемая стенка...
Тип: Изобретение
Номер охранного документа: 0002728279
Дата охранного документа: 29.07.2020
+ добавить свой РИД