×
18.07.2018
218.016.71da

Результат интеллектуальной деятельности: ГИБРИДНАЯ АЭС С ДОПОЛНИТЕЛЬНОЙ ВЫСОКОТЕМПЕРАТУРНОЙ ПАРОВОЙ ТУРБИНОЙ

Вид РИД

Изобретение

№ охранного документа
0002661341
Дата охранного документа
16.07.2018
Аннотация: Изобретение относится к области атомной теплотехники. Гибридная АЭС содержит последовательно соединенные ядерный реактор, низкотемпературный реакторный парогенератор, низкотемпературную паровую турбину с сепаратором-пароперегревателем, конденсатор, конденсатный насос, регенеративные подогреватели низкого давления, деаэратор, питательный насос и подогреватель высокого давления. При этом к основной низкотемпературной паровой турбине присоединяется высокотемпературный паротурбинный блок с котлом-пароперегревателем, использующий для перегрева часть пара, идущего из реакторного парогенератора, теплоту сгорания органического топлива. Перегретый высокотемпературный пар направлен к высокотемпературной паровой турбине, присоединенной к стандартной АЭС и общему реакторному парогенератору. 1 ил.

Изобретение относится к области атомной теплотехники и призвано повысить эффективность выработки электроэнергии на базе атомных парогенераторов при одновременном увеличении диапазона регулирования вырабатываемой мощности без нарушения режима работы реактора АЭС.

Характерной особенностью большинства современных АЭС является то, что паровые турбины этих электростанций работают на базе сухого насыщенного пара (с очень малым (5-7°С) перегревом), то есть при сравнительно низких начальных температурах теплоносителя (~300°С), что предопределяет их работу с низким к.п.д. (порядка 35%). При этом в силу особенностей работы атомных реакторов допустимый диапазон регулирования мощности этих турбин оказывается весьма ограниченным.

Для повышения их экономичности в работах [1, 2, 3] (Рогалев А.Н. Разработка и исследование высокотемпературных паротурбинных технологий производства электроэнергии, Зарянкин А.Е., Рогалев Н.Д., Лысков М.Г., Рогалев А.Н., Турбоустановка АЭС с внешним пароперегревателем, Зарянкин А.Е., Лысков М.Г., Рогалев А.Н. Высокотемпературные технологии производства электроэнергии на АЭС с реакторными установками ВВЭР-1000) предлагается переходить к созданию гибридных АЭС, где сухой насыщенный пар после реакторного парогенератора направляется в промежуточный котел-пароперегреватель, где генерируется высокотемпературный перегретый пар на базе теплоты сгорания органического или водородного топлива.

В указанных работах на базе блока АЭС, работающего с реактором ВВЭР-1000, показано, что таким образом можно примерно в 2 раза увеличить мощность паротурбинного блока, увеличить к.п.д. выработки электроэнергии на 10-15%, причем к.п.д. выработки дополнительной мощности происходит с к.п.д. 50-51%.

При этом, однако, сохраняется второй отличительный недостаток АЭС - низкий диапазон регулирования мощности существующих АЭС.

Техническая задача, решаемая в настоящем изобретении, состоит в увеличении эффективности работы гибридной АЭС. Технический эффект, получаемый при решении поставленной технической задачи, заключается в возможности регулирования на 25-35% мощности АЭС без изменения режима работы атомного реактора, достигается это тем, что гибридная АЭС, содержащая последовательно соединенные ядерный реактор, низкотемпературный реакторный парогенератор, низкотемпературную паровую турбину с сепаратором-пароперегревателем, конденсатор, конденсатный насос, регенеративные подогреватели низкого давления, деаэратор, питательный насос, подогреватель высокого давления, согласно изобретению дополнена высокотемпературным паротурбинным блоком с котлом-пароперегревателем, использующим органическое или водородное топливо, входом подключенным к выходу низкотемпературного реакторного парогенератора, а выходом соединенным с цилиндром высокого давления высокотемпературного паротурбинного блока, при этом выход подогревателя высокого давления высокотемпературного паротурбинного блока подсоединен ко входу низкотемпературного реакторного парогенератора.

На чертеже представлена структурная схема предлагаемого устройства, содержащего последовательно соединенные ядерный реактор 1, низкотемпературный реакторный парогенератор 2, низкотемпературную паровую турбину 3 с сепаратором-пароперегревателем 4, конденсатор 5, конденсатный насос 6, регенеративные подогреватели низкого давления 7 (не указаны), деаэратор 8, питательный насос 9, подогреватель высокого давления 10. Устройство дополнительно снабжено высокотемпературным паротурбинным блоком 11 с котлом-пароперегревателем 12, входом подключенным к выходу низкотемпературного реакторного парогенератора 2, а выходом соединенным с цилиндром высокого давления 13 высокотемпературного паротурбинного блока 11, при этом выход подогревателя высокого давления 14 высокотемпературного паротурбинного блока 11 подсоединен ко входу низкотемпературного реакторного парогенератора 2. Таким образом, поставленная задача решается путем присоединения к существующему блоку АЭС дополнительной высокотемпературной паровой турбины со своим котлом-пароперегревателем, где на базе теплоты сгорания органического топлива происходит перегрев только части пара, генерируемого в атомном реакторе.

Достигаемый при этом эффект проиллюстрируем на примере стандартного блока АЭС К-1000-60 ЛМЗ [4] (Трояновский Б.М.).

Тепловая схема предлагаемой новой гибридной АЭС приведена на чертеже и состоит из двух самостоятельных блоков - исходного низкотемпературного блока 15 K-N1/65-3000 и присоединенного высокотемпературного блока 11 K-N2 /55-300. N1 - номинальная мощность существующего низкотемпературного блока 15; N2=n⋅Nl - мощность присоединяемого высокотемпературного блока 11; n - коэффициент разгрузки присоединяемого высокотемпературного блока 11 (0<n<1).

В силу того что для повышения температуры пара перед турбиной 13 пар на пути к этому блоку проходит нагрев в специальном котле пароперегревателе 12, давление пара перед высокотемпературной турбиной 13 снижается с 65 до 55 бар. Пар после реакторного парогенератора 2 поступает в количестве по магистрали GI в количестве D1 - к низкотемпературной основной двухцилиндровой турбине 3 и перед ее цилиндром высокого давления (ЦВД) 3 некоторая его часть по магистрали G3 идет к сепаратору-пароперегревателю 4 для перегрева влажного пара, покидающего ЦВД, и далее поступает в цилиндр низкого давления (ЦНД). После ЦНД в конденсаторе 5 происходит конденсация пара, а образующийся конденсат конденсатным насосом 6 прокачивается через ряд регенеративных подогревателей 7 и подается в деаэратор 8(на чертеже для упрощения схемы условно показан один регенеративный подогреватель 7). После деаэратора 8 питательным насосом 9 питательная вода прокачивается через подогреватели высокого давления 10 и подается по магистрали G4 в основной (реакторный) парогенератор 2.

Описанный принцип работы тепловой схемы является типичным для всех блоков АЭС, работающих на базе отечественного реактора ВВЭР-1000, но в данном случае базовый паротурбинный блок работает при сниженной нагрузке, поскольку по магистрали GI идет только часть пара D1, генерируемого в низкотемпературном парогенераторе 2, и эта часть определяется мощностью N2 присоединенной высокотемпературной турбины 11, состоящей из трех цилиндров: цилиндра высокого давления (ЦВД) 13, цилиндра среднего давления (ЦСД) 16 и цилиндра низкого давления (ЦНД) 17.

Если ввести в рассмотрение коэффициент снижения расчетной мощности n основного низкотемпературного паротурбинного блока АЭС 15 , равный отношению его мощности N1 при установке присоединенной высокотемпературной турбины 9 к номинальной мощности N0, то N1=n⋅N0 и, соответственно, D1=n⋅D0, т.к. при снижении нагрузки основной турбины низкотемпературной турбины (НТТ) 13 полагаемый перепад энтальпий H0 и к.п.д. турбины меняются мало и произведение. Тогда из условия неизменности расхода пара, генерируемого в реакторном парогенераторе, следует, что расход пара D2, идущего к внешнему котлу-пароперегревателю 10, будет равен

а расчетная мощность N2 присоединенной высокотемпературной турбины 11 (ПВТТ) будет равна

,

где Н02 - располагаемый перепад энтальпий на высокотемпературном паротурбинном блоке 11 по параметрам пара за котлом-пароперегревателем 12, a - внутренний относительный к.п.д. высокотемпературного паротурбинного блока 11.

Выразим далее произведение через аналогичное произведение основной низкотемпературной турбины 15 при ее номинальной мощности N0:

.

Здесь k - переходный коэффициент, учитывающий как увеличение перепада энтальпий на высокотемпературном паротурбинном блоке 11, обусловленного перегревом пара, так и увеличение к.п.д. высокотемпературного паротурбинного блока 11 в связи с резким снижением потерь от влажности пара.

Подставив в (2) соотношения (1) и (3), получаем значение мощности высокотемпературного паротурбинного блока 11 N2

Поскольку номинальная мощность основной турбины АЭС 13 N0 равна

Все элементы тепловой схемы присоединенного высокотемпературного паротурбинного блока 11 мощностью N2 идентичны элементам тепловой схемы основной низкотемпературной турбины 15. Здесь, однако, отсутствует дорогой и достаточно сложный сепаратор-пароперегреватель, аналогичный сепаратору-пароперегревателю 4 в основной турбине 15, и в конструкцию высокотемпературного паротурбинного блока 11 введен цилиндр среднего давления (ЦСД)16.

Технические результаты, достигаемые при реализации настоящего изобретения, состоят в следующем:

В зависимости от степени разгрузки основной низкотемпературной паровой турбины 15 происходит увеличение мощности гибридной АЭС.

Проиллюстрируем сказанное на примере блока К-1000/65-3000 ЛМЗ, работающего на базе реактора ВВЭР-1000. Если разгрузить основную низкотемпературную турбину 15 К-1000/65-3000 на 40% (n=0,6) и провести перегрев пара в количестве D2=D0⋅(1-n) до температуры 650°С при увеличении к.п.д. высокотемпературного паротурбинного блока на 6% (коэффициент в формуле (5) достигает 2), то мощность высокотемпературного паротурбинного блока 11 составит N2=800 МВт.

Соответственно, суммарная мощность гибридной АЭС при указанных условиях составит Nгиб=N1+N2=1400 МВт. То есть прирост мощности равен ΔN=400 МВт. Заметим, что капитальные затраты при строительстве обычной тепловой электростанции мощностью в 400 МВт окажутся на порядок выше строительства блока, работающего в паре с существующим блоком АЭС.

Выводы о преимуществах предлагаемогоустройства:

1. Переход к гибридной АЭС с высокотемпературной присоединенной паровой турбиной обеспечивает существенное увеличение к.п.д. гибридной АЭС, определяемого по следующей очевидной формуле: , где - абсолютный электрический к.п.д. (нетто) стандартного блока АЭС, а - абсолютный электрический к.п.д. присоеденного высокотемпературного блока. Согласно (5) (Трояновский Б.М., Филипов Г.А., Булкин А.Е. Паровые и газовые турбины атомных электростанций. М. Энергоатомиздат, 1985 г.). Блок АЭС с турбиной К-1000/65 ЛМЗ имеет к.п.д , равный 35%.

Согласно [2] (Зарянкин А.Е., Рогалев Н.Д., Лысков М.Г., Рогалев А.Н. Турбоустановка АЭС с внешним пароперегревателем) к.п.д. высокотемпературного блока, использующего для перегрева пара внешний котел- пароперегреватель, достигает , тогда, к.п.д. гибридной АЭС, работающей на базе реактора ВВЭР-1000 при 40% разгрузке низкотемпературной турбины, составит

То есть переход к гибридной АЭС позволит увеличивать мощность и экономичность показателей таких электростанций, причем степень увеличения относительных показателей непрерывно растет по мере снижения коэффициента n, определяющего степень разгрузки мощности низкотемпературной турбины

2. Важным результатом перехода к гибридным АЭС указанного типа является возможность изменять нагрузку АЭС в пределах выработки дополнительной мощности, определяемой соотношением (6) без изменения режима работы ректора. Так, для условий, сформулированных выше (N0=1000; n=0,6; k=2), ΔN=400 МВт.

Соответственно, при изменении нагрузки присоединенной высокотемпературной турбины в пределах 400 МВ (это 28,9% от общей нагрузки гибридной АЭС) режим работы реактора остается ненеизменным. При n=0,4 диапазон изменения нагрузки гибридной АЭС вырастает до 600 МВт (43% от общей мощности).

3. При работе АЭС с основной низкотемпературной и присоединенной высокотемпературной турбинами резко возрастает надежность АЭС, т.к. в этом случае любая внеплановая остановка одной из указанных турбин не влечет за собой серьезного нарушения в работе реактора.

Литература

1. Рогалев А.Н. Разработка и исследование высокотемпературных паротурбинных технологий производства электроэнергии. Автореферат диссертации к.т.н, Москва, МЭИ. 2011).

2. Зарянкин А.Е., Рогалев Н.Д., Лысков М.Г., Рогалев А.Н. Турбоустановка АЭС с внешним пароперегревателем (Вестник МЭИ, 2011 г., №4).

3. Зарянкин А.Е., Лысков М.Г., Рогалев А.Н. Высокотемпературные технологии производства электроэнергии на АЭС с реакторными установками ВВЭР-1000 (Вестник МЭИ, №4, 2011 г.).

4. Материалы международной научной школы «Проблемы газодинамики и тепломассообмена в энергетических технологиях» (стр. 179-181, Москва, 2011 г.)

5. Трояновский Б.М., Филипов Г.А., Булкин А.Е. Паровые и газовые турбины атомных электростанций (М., Энергоатомиздат, 1985 г.).

Гибридная АЭС, содержащая последовательно соединенные ядерный реактор, низкотемпературный реакторный парогенератор, низкотемпературную паровую турбину с сепаратором-пароперегревателем, конденсатор, конденсатный насос, регенеративные подогреватели низкого давления, деаэратор, питательный насос, подогреватель высокого давления, отличающаяся тем, что она дополнена высокотемпературным паротурбинным блоком с котлом-пароперегревателем, использующим органическое или водородное топливо, входом подключенным к выходу низкотемпературного реакторного парогенератора, а выходом соединенным с цилиндром высокого давления высокотемпературного паротурбинного блока, при этом выход подогревателя высокого давления высокотемпературного паротурбинного блока подсоединен ко входу низкотемпературного реакторного парогенератора.
ГИБРИДНАЯ АЭС С ДОПОЛНИТЕЛЬНОЙ ВЫСОКОТЕМПЕРАТУРНОЙ ПАРОВОЙ ТУРБИНОЙ
ГИБРИДНАЯ АЭС С ДОПОЛНИТЕЛЬНОЙ ВЫСОКОТЕМПЕРАТУРНОЙ ПАРОВОЙ ТУРБИНОЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 208.
10.09.2015
№216.013.7894

Способ изготовления электродно-диафрагменного блока для щелочного электролизера воды

Изобретение относится к способу изготовления электродно-диафрагменного блока для щелочного электролизера воды, включающему приготовление формующего раствора диафрагмы, нанесение формующего раствора на подложку, изготовление диафрагмы методом фазовой инверсии и формирование...
Тип: Изобретение
Номер охранного документа: 0002562457
Дата охранного документа: 10.09.2015
20.10.2015
№216.013.83b4

Способ изготовления диафрагменного материала для электролитического разложения воды

Изобретение относится к технологии изготовления нетканых диафрагменных материалов на основе волокон полимера с внедренными по поверхности частицами гидрофильного наполнителя для электролизеров воды с щелочным электролитом. Способ изготовления диафрагменного материала для электролитического...
Тип: Изобретение
Номер охранного документа: 0002565319
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8881

Пылеугольная топка

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах с прямым вдуванием угольной пыли. Пылеугольная топка содержит экранированные прямоугольную вертикальную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, установленные по...
Тип: Изобретение
Номер охранного документа: 0002566548
Дата охранного документа: 27.10.2015
20.12.2015
№216.013.9cf0

Устройство для токарной обработки некруглых деталей

Устройство относится к электромеханике и может быть использовано для повышения точности токарной обработки серийных некруглых деталей, выполняемой по бескопирной технологии, в условиях колебания скорости вращения детали. Технический результат - повышение точности формообразования в условиях...
Тип: Изобретение
Номер охранного документа: 0002571801
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a0cb

Устройство для управления вентильно-индукторным электроприводом

Изобретение относится к области электротехники и может быть использовано в электроприводе станков, гибридного и электрического транспорта, установок общепромышленного назначения. Техническим результатом является повышение надежности устройства. Устройство управления предусматривает...
Тип: Изобретение
Номер охранного документа: 0002572805
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2e6a

Способ электропитания генератора озона поверхностного разряда

Изобретение относится к электротехнике и может быть использовано для экономии электроэнергии и повышения надежности генераторов озона барьерно-поверхностного разряда. Технический результат - повышение эффективности использования электроэнергии и уменьшение потребляемой мощности озонатора от...
Тип: Изобретение
Номер охранного документа: 0002579354
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.4023

Микроканальный теплообменник

Изобретение относится к теплообменной технике и может использоваться в микроканальных теплообменниках. Микроканальный теплообменник состоит из жесткого корпуса, содержащего теплообменную матрицу, образованную из спаянных между собой тонких гладких теплопроводных пластин одинаковой конструкции,...
Тип: Изобретение
Номер охранного документа: 0002584081
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4a79

Гель-полимерный электролит для литиевых источников тока

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых первичных и вторичных источников тока, а также суперконденсаторов. Повышение удельной электрической проводимости гель-полимерного электролита, обеспечение его химической и...
Тип: Изобретение
Номер охранного документа: 0002594763
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4cd4

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов

Изобретение относится к энергетическому оборудованию и может быть использовано для получения электрической энергии как в стационарных установках, так и на транспорте, а также при производстве и эксплуатации энергоустановок. Повышение эффективности работы энергоустановки с электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002594895
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4d93

Установка для нанесения покрытий на поверхности деталей

Изобретение относится к установке для нанесения покрытий на поверхности деталей. Внутри корпуса вакуумной камеры установлен, по меньшей мере, один источник распыляемого материала, выполненный в виде N магнетронов, где N - целое число и N>1, и ионный источник. Внутри корпуса камеры...
Тип: Изобретение
Номер охранного документа: 0002595187
Дата охранного документа: 20.08.2016
Показаны записи 1-10 из 15.
27.09.2014
№216.012.f7e3

Двухроторный воздушный компрессор для парогазовых установок

Рассматривается двухроторный воздушный компрессор для парогазовых установок, где в едином корпусе установлены ротор низкого давления, связанный с утилизационной паровой турбиной, расположенной на стороне всасывания атмосферного воздуха в компрессор, и ротор высокого давления, связанный с...
Тип: Изобретение
Номер охранного документа: 0002529296
Дата охранного документа: 27.09.2014
13.01.2017
№217.015.912b

Диафрагма паровой турбины

Диафрагма для первой ступени нижнего яруса двухъярусного цилиндра низкого давления (ЦНД). Диафрагма выполнена двухъярусной, причем в нижней части располагается обычная диафрагма ступени паровой турбины, а в верхнем ярусе установлен аэродинамический фильтр. Фильтр состоит из плоских радиально...
Тип: Изобретение
Номер охранного документа: 0002605876
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.91b1

Турбодетандерная система утилизации теплоты циркуляционной воды на конденсационных блоках паровых турбин тепловой электрической станции

Изобретение относится к энергетике. Турбодетандерная система утилизации теплоты циркуляционной воды, идущей после конденсатора конденсационной паровой турбины к градирне или брызгальному бассейну, содержащая циркуляционный насос, трубопроводы циркуляционной воды, конденсатор, градирни или...
Тип: Изобретение
Номер охранного документа: 0002605878
Дата охранного документа: 27.12.2016
26.08.2017
№217.015.e373

Лопаточная решетка турбомашины

Изобретение относится к области машиностроения, может быть использовано при конструировании ступеней паровых и газовых турбин, компрессоров и направлено на повышение аэродинамической эффективности лопаточной решетки турбомашины. Лопаточная решетка турбомашины содержит лопатки, установленные...
Тип: Изобретение
Номер охранного документа: 0002626285
Дата охранного документа: 25.07.2017
29.12.2017
№217.015.f308

Диффузор

Изобретение относится к области машиностроения, в частности к выхлопным диффузорам турбомашин. Диффузор содержит внешний обвод 1, выполненный коническим, на внутренней стороне которого выполнено оребрение, содержащее основные ребра 2 и вспомогательные ребра 3. Основные ребра 2 выполнены...
Тип: Изобретение
Номер охранного документа: 0002637421
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0579

Двухъярусная ступень двухъярусного цилиндра низкого давления

Двухъярусная ступень паровой турбины содержит двухъярусный сопловой аппарат и двухъярусное рабочее колесо. Сопловой аппарат ступени выполнен в виде единой неразборной конструкции с конической перегородкой, разделяющей сопловые лопатки верхнего яруса от сопловых лопаток нижнего яруса. Хорды...
Тип: Изобретение
Номер охранного документа: 0002630817
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0598

Послеотборная ступень паровой турбины

Изобретение относится к области энергетического машиностроения и может быть использовано при конструировании и изготовлении паровых турбин для тепловых и атомных электростанций. Послеотборная ступень паровой турбины содержит лопатки соплового аппарата, тело диафрагмы, внешний обвод соплового...
Тип: Изобретение
Номер охранного документа: 0002630951
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.0929

Диффузор

Изобретение относится к области машиностроения, может быть использовано при создании выхлопных диффузоров турбомашин и направлено на повышение надежности элементов турбомашин. Диффузор содержит внешний обвод 1, выполненный коническим, вблизи внутренней поверхности которого установлен...
Тип: Изобретение
Номер охранного документа: 0002631848
Дата охранного документа: 26.09.2017
10.05.2018
№218.016.3f45

Разгруженный регулирующий клапан

Изобретение относится к энергетическому машиностроению и призвано снизить гидравлическое сопротивление в системе паровпуска в паровые турбины с одновременным повышением надежности разгруженных регулирующих клапанов. Разгруженный регулирующий клапан, преимущественно для паровых турбин, содержит...
Тип: Изобретение
Номер охранного документа: 0002648800
Дата охранного документа: 28.03.2018
28.11.2018
№218.016.a13b

Устройство соплового парораспределения паровой турбины с выносной камерой смешения

Изобретение относится к области энергетического машиностроения и призвано устранить все отрицательные последствия, присущие сопловому парораспределению. Предлагается новая система соплового парораспределения с выносной камерой смешения, преимущественно для паровых турбин, содержащая стопорный...
Тип: Изобретение
Номер охранного документа: 0002673362
Дата охранного документа: 26.11.2018
+ добавить свой РИД