×
15.08.2019
219.017.bfa6

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПИРОУГЛЕРОДНОГО ПОКРЫТИЯ НА ЛИТЕЙНЫЕ КЕРАМИЧЕСКИЕ ФОРМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает термическую обработку путем прокалки литейной формы с нанесенным углерод-содержащим компонентом. В качестве углерод-содержащего компонента используют водную суспензию дисперсного пироуглерода, которую наносят на лицевой слой формы путем пропитки на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии, а далее осуществляют прокалку формы с нанесенным пироуглеродным покрытием при температуре не более 350°С. При этом температура литейной формы и суспензии на стадии пропитки не превышает 100°С, размер частиц пироуглерода составляет 0,100-2 мкм, а содержание частиц пироуглерода в суспензии составляет 1-6 мас.%. Изобретение позволяет получать устойчивое, плотное, равномерно распределенное по поверхности покрытие простым способом, при меньшей температуре с низкими трудо- и энергозатратами. 2 табл., 11 пр.

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов.

Известен способ нанесения пироуглеродного покрытия на литейные керамические формы, улучшающий качество отливок титановых сплавов. Способ заключается в пропускании газовой смеси из углеводородного и инертного газов через форму при температурах 650-1050°С со скоростью 0,1-0,7 см/с при концентрации углеводородного газа 10-100% в расчете на метан по углероду (АС СССР №457529, МПК В22С 3/00, 1973). При этой операции протекает процесс пиролиза, сопровождаемый образованием покрытия с 3% пироуглерода.

Недостатком способа является сложность технологии, высокая длительность процесса (составляющая до 10 часов), высокие энергозатраты, связанные с необходимостью длительного поддержания высоких температур для пиролиза, низкое содержание пироуглерода в покрытии.

Известен также способ нанесения пироуглеродного покрытия на литейные керамические формы, включающий их предварительный нагрев до температур 900-1100°С, и принудительный обдув газовой смесью. Обдув формы осуществляют газовой смесью состава, об. %: ароматические углеводороды или их производные - 20,0-65,0, инертный газ - 35,0-80,0 в течение 6-10 час в направлении от наружной к внутренним поверхностям формы. (АС СССР №749538, МПК В22С 3/00, 1975).

Недостатком способа является сложность технологии, высокая длительность процесса (составляющая до 10 часов), высокие энергозатраты, связанные с необходимостью длительного поддержания высоких температур.

Известен также способ нанесения пироуглеродного покрытия на литейные керамические формы путем обработки предварительно нагретых форм до температур 1050-1100°С в зернистой засыпке из графитовых частиц смесью углеводородного и инертных газов. Расход газовой смеси составляет 40-360 л/ч на 1 кг засыпки зернистостью 3-30 мм (АС СССР №574267, МПК В22С 3/00, 1976).

Недостатками способа являются сложность технологии, высокие энергозатраты, связанные с высокими температурами прокаливания форм.

Эти недостатки устраняются предлагаемым техническим решением. Решается задача совершенствования технологического процесса в части упрощения технологии нанесения пироуглеродного покрытия на литейные керамические формы для литья титановых и химически активных сплавов.

Технический результат - упрощение технологии нанесения пироуглеродного покрытия, снижение температуры прокаливания форм, повышение экономичности процесса.

Технический результат достигается тем, что согласно способу нанесения пироуглеродного покрытия на литейные керамические формы, включающему термическую обработку угдерод-содержащего компонента и литейной формы, в качестве углерод-содержащего компонента используют водную суспензию дисперсного пироуглерода, которую наносят на лицевой слой формы путем пропитки на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии, прокалкой формы при температуре не более 350°С.При этом температура литейной формы и суспензии на стадии пропитки не превышает 100°С, размер частиц дисперсного пироуглерода составляет 0,100-2 мкм, а содержание частиц дисперсного пироуглерода в суспензии составляет 1-6% масс.

Нанесение слоя водной суспензии дисперсного углерода на лицевой слой керамической формы путем пропитки при заливке суспензии в литейную форму на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии является простой операцией, позволяющей также эффективно использовать тепло прокаленной формы.

Прокалка формы после пропитки суспензией дисперсного углерода при температуре не более 350°С обусловлена тем, что при термообработке в среде воздуха при этой температуре углерод не выгорает и в лицевом слое формы сохраняется защитный слой дисперсного пироуглерода. При этом толщина углеродного слоя может составлять малые величины (порядка 0,1-1,0 мкм), но достаточные для защиты от воздействия химически активных расплавов на материал оболочковой формы, поскольку часть углерода проникает в поры керамической формы,

Поддержание температуры литейной формы и суспензии на стадии пропитки не выше 100°С обусловлено необходимостью получения качественного пироуглеродного покрытия. При температурах пропитки горячей формы до 100°С поддерживается низкая вязкость суспензии, что улучшает распределение дисперсного пироуглерода на поверхности лицевого слоя формы и снижаются энергозатраты на проведение процесса прокалки формы, поскольку используется тепло горячей формы, охлаждаемой после стадии прокаливания. При температурах выше 100°С происходит расслоение суспензии пироуглерода за счет кипения воды, что снижает равномерность покрытия углеродного слоя.

Размер частиц дисперсного пироуглерода должен составлять 0,100-2 мкм. При малом размере частиц пироуглерода (ниже 0,100 мкм) они фильтруются во внутренние слои керамической оболочки формы, их концентрация и эффективность защиты поверхности лицевого слоя формы снижаются. При большом размере частиц дисперсного пироуглерода (выше 2 мкм) они плохо и неравномерно закрепляются на поверхности лицевого слоя, что также снижает эффективность защиты поверхности лицевого слоя керамической формы при литье титановых и химически активных сплавов.

Содержание частиц дисперсного пироуглерода в водной суспензии должно составлять 1 -6% масс. При содержании частиц дисперсного углерода в суспензии менее 1% образуется слой пироуглерода недостаточной толщины, что не гарантирует защитные свойства покрытия, а при содержании частиц дисперсного углерода в суспензии более 6% суспензия пироуглерода в воде становится малоустойчивой, что приводит к неравномерности покрытия, особенно на вертикальных поверхностях керамической оболочки. В результате снижается эффективность защиты поверхности лицевого слоя керамической формы при литье титановых и химически активных сплавов.

Примеры осуществления способа:

Пример 1. Для нанесения покрытия из пироуглерода на плоский образец керамики, используемой для изготовления литейных форм, использовали водную суспензию дисперсного пироуглерода с размерами частиц 0,1-2,0 мкм и концентрацией 0,5%. Далее образец керамики при температуре 25°С погружали на 5 минут в суспензию дисперсного пироуглерода. Затем остатки суспензии пироуглерода отделяли от образца керамики (выливая отработанную суспензию из полости формы), образец керамики прокаливали при температуре 300°С в течение 2 часов в воздушной среде. Полученное покрытие керамики из дисперсного пироуглерода анализировали под микроскопом с оценкой толщины и качества покрытия. Устойчивость покрытия определяли визуально при нанесении стержнем царапин на поверхность покрытия. Характеристики полученного покрытия из пироуглерода по примеру 1 приведены в таблице 1, из анализа которой следует, что получаемое при указанных условиях покрытие имеет малую толщину и неравномерно распределено по поверхности образца керамики.

Примеры 2-5 осуществляли аналогично примеру 1, с тем отличием, что концентрацию пироуглерода в водной суспензии поддерживали соответственно 1; 2; 6; 8%. Характеристики полученного покрытия из пироуглерода по примерам 2-5 приведены в таблице 1. Из анализа данных таблицы 1 следует, что хорошее устойчивое, плотное покрытие толщиной 2-7,3 мкм из пироуглерода на образце литейной керамики формируется при нанесении покрытия согласно примерам 2-4, в которых при размере частиц пироуглерода 0,100-2,0 мкм концентрация пироуглерода в суспензии составляет от 1 до 6%.

Пример 6 проводили аналогично примеру 3 с тем отличием, что температуру пропитки поддерживали 80°С, а температуру прокаливания образца керамики поддерживали 150°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет толщину 2,1 мкм и равномерно покрывает поверхность образца керамики.

Пример 7 проводили аналогично примеру 3 с тем отличием, что температуру прокаливания образца керамики поддерживали 350°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет толщину 2,0 мкм и равномерно покрывает поверхность образца керамики.

Пример 8 проводили аналогично примеру 4 с тем отличием, что температуру пропитки поддерживали 25°С, а температуру прокаливания образца керамики поддерживали 350°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет толщину 7,3 мкм и равномерно покрывает поверхность образца керамики.

Пример 9 проводили аналогично примеру 3 с тем отличием, что температуру пропитки поддерживали 80°С, а температуру прокаливания образца керамики поддерживали 400°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет нарушение сплошности.

Пример 10 проводили аналогично примеру 1 с тем отличием, что температуру пропитки поддерживали 80°С, а температуру прокаливания образца керамики поддерживали 350°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет нарушение сплошности.

Пример 11 проводили аналогично примеру 1 с тем отличием, что температуру пропитки поддерживали 80°С, а температуру прокаливания образца керамики поддерживали 350°С. Характеристики полученного покрытия из пироуглерода приведены в таблице 2, из анализа которой следует, что полученное покрытие из пироуглерода имеет нарушение сплошности.

Таким образом, нанесение пироуглеродного покрытия на литейные керамические формы по примерам №2-4, 6-8 согласно заявляемому способу позволяет получать устойчивое, плотное, равномерно распределенное по поверхности покрытие простым способом, при меньшей температуре с низкими трудо- и энергозатратами.

Способ нанесения пироуглеродного покрытия на литейные керамические формы, включающий термическую обработку путем прокалки литейной формы с нанесенным углерод-содержащим компонентом, отличающийся тем, что в качестве углерод-содержащего компонента используют водную суспензию дисперсного пироуглерода, которую наносят на лицевой слой формы путем пропитки на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии, а далее осуществляют прокалку формы с нанесенным пироуглеродным покрытием при температуре не более 350°С, при этом температура литейной формы и суспензии на стадии пропитки не превышает 100°С, размер частиц пироуглерода составляет 0,100-2 мкм, а содержание частиц пироуглерода в суспензии составляет 1-6 мас.%.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 59.
16.08.2019
№219.017.c0cc

Асфальтобетон

Изобретение относится к дорожно-строительным материалам и может быть использовано в дорожном и аэродромном строительстве в I-III климатических зонах, характеризующихся холодным и влажным климатом. Асфальтобетон содержит компоненты при следующем соотношении, мас. %: щебень фракции от 5 до 20 мм...
Тип: Изобретение
Номер охранного документа: 0002697468
Дата охранного документа: 14.08.2019
01.09.2019
№219.017.c520

Способ гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов

Использование: для гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов. Сущность изобретения заключается в том, что осуществляют воздействие на испытуемый образец струей жидкости под давлением 350…380 МПа при скорости 800…850 м/с, при этом на испытуемый образец...
Тип: Изобретение
Номер охранного документа: 0002698485
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6a1

Сенсорная система

Изобретение относится к области измерительной техники, в частности к сенсорным тактильным системам для измерения геометрических, трибологических и физико-механических характеристик поверхности тела по результатам измерения результирующих сил и моментов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002698958
Дата охранного документа: 02.09.2019
07.09.2019
№219.017.c866

Способ эксплуатации нефтяных наклонно-направленных скважин и скважин с боковыми стволами

Изобретение относится к нефтедобывающей отрасли и может быть использовано при добыче нефти из нефтяных наклонно-направленных скважин и скважин с боковыми стволами штанговыми насосными установками (ШСНУ), оборудованными канатными штангами. Для осуществления способа используют поверхностный...
Тип: Изобретение
Номер охранного документа: 0002699504
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cbd7

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством. Подвижный закрылок состоит из несущего элемента, верхней и нижней...
Тип: Изобретение
Номер охранного документа: 0002701416
Дата охранного документа: 26.09.2019
17.10.2019
№219.017.d721

Способ повышения нефтеотдачи пластов и интенсификации добычи нефти и система для его осуществления

Изобретения относятся к нефтедобывающей промышленности, а именно к способам повышения нефтеотдачи пластов, интенсификации добычи нефти и стимуляции скважин посредством создания каналов в нефтяных пластах и устройствам для их осуществления. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002703064
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.da9c

Способ оценки модуля деформации грунта

Изобретение относится к области строительства и предназначено для оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Предлагается способ оценки модуля деформации грунта, при котором...
Тип: Изобретение
Номер охранного документа: 0002704074
Дата охранного документа: 23.10.2019
30.10.2019
№219.017.dbcf

Способ формирования сжимающих остаточных напряжений при дробеструйной обработке деталей

Изобретение относится к формированию сжимающих остаточных напряжений при дробеструйной обработке. Осуществляют дробеструйную обработку поверхности контрольной пластины, изготовленной из материала обрабатываемой детали, и измеряют стрелу прогиба деформированной контрольной пластины. Давление...
Тип: Изобретение
Номер охранного документа: 0002704341
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dbf7

Способ электронно-лучевой наплавки с контролем положения присадочной проволоки относительно электронного луча (варианты)

Изобретение относится к способу электронно-лучевой наплавки с оперативным контролем положения присадочной проволоки относительно электронного луча. Способ содержит этапы, на которых электронно-лучевую наплавку проводят с непрерывной осцилляцией электронного луча по траектории, имеющей...
Тип: Изобретение
Номер охранного документа: 0002704682
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dcbc

Способ определения параметров термомеханической обработки и химического состава функциональных материалов с помощью глубокой нейронной сети

Изобретение относится к способу определения параметров технологического процесса получения функционального материала и химического состава функционального материала. Технический результат заключается в повышении точности определения параметров термомеханической обработки и химического состава...
Тип: Изобретение
Номер охранного документа: 0002704751
Дата охранного документа: 30.10.2019
Показаны записи 21-27 из 27.
05.12.2018
№218.016.a39c

Стенд для измерения энергетических показателей энергоустановок

Изобретение относится к измерительной технике и может быть использовано для определения осевого усилия, угловой скорости, крутящего момента при экспериментальных исследованиях турбин и прочих энергоустановок. Стенд включает корпус 1, в котором установлен вращающийся вал 2, опирающийся на...
Тип: Изобретение
Номер охранного документа: 0002673869
Дата охранного документа: 30.11.2018
29.04.2019
№219.017.443b

Способ получения чистого нанодисперсного порошка диоксида титана

Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии. Способ включает смешивание чистого раствора прекурсора со спиртами, поддерживающими горение, распыление и сжигание смеси в пламени, при...
Тип: Изобретение
Номер охранного документа: 0002470855
Дата охранного документа: 27.12.2012
17.02.2020
№220.018.0319

Способ переработки горячего технического пентаэритрито-формиатного маточного раствора

Настоящее изобретение относится к способу переработки горячего технического пентаэритрито-формиатного маточного раствора, включающему введение в маточный раствор реагентов, охлаждение смеси маточного раствора и реагента при перемешивании, выдержку суспензии при определенной температуре,...
Тип: Изобретение
Номер охранного документа: 0002714326
Дата охранного документа: 14.02.2020
02.03.2020
№220.018.07d9

Способ очистки сточных вод от ионов аммония

Изобретение может быть использовано для очистки сточных вод на предприятиях химической, нефтехимической, металлургической, коксохимической промышленности. Очистка сточных вод от ионов аммония включает добавку в сточные воды растворов, содержащих фосфат-ионы и ионы магния, и осаждение...
Тип: Изобретение
Номер охранного документа: 0002715529
Дата охранного документа: 28.02.2020
07.03.2020
№220.018.09f1

Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия

Изобретение относится к химической технологии переработки отходов солевых растворов для получения минеральных удобрений и хлорида натрия. Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия, включает конверсию солевых растворов хлоридом калия,...
Тип: Изобретение
Номер охранного документа: 0002716048
Дата охранного документа: 05.03.2020
12.04.2023
№223.018.43b0

Способ очистки поверхностей и микротрещин лопаток авиационных газотурбинных двигателей и газотурбинных установок от оксидов металлов

Изобретение относится к технологии ремонта лопаток и может использоваться в энергетике, авиационном машиностроении. Способ очистки поверхностей и микротрещин лопаток авиационных газотурбинных двигателей и газотурбинных установок от оксидов металлов включает приготовление раствора для очистки,...
Тип: Изобретение
Номер охранного документа: 0002793644
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4e4d

Водно-коллоидное связующее для керамических суспензий

Изобретение относится к области литейного производства и может быть использовано при производстве отливок из высокотемпературных сплавов для деталей аэрокосмической, автомобильной, атомной, химической, металлургической и других отраслей промышленности. Водно-коллоидное связующее для...
Тип: Изобретение
Номер охранного документа: 0002793023
Дата охранного документа: 28.03.2023
+ добавить свой РИД