×
10.08.2019
219.017.bd81

Результат интеллектуальной деятельности: УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного рассеяния света включает: твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем. Второй SERS-активный слой выполнен из массива наночастиц со средним размером, равным или меньше, чем у первого SERS-активного слоя. Технический результат изобретения заключается в повышении чувствительности SERS-подложки и расширении номенклатуры изучаемых веществ. 10 з.п. ф-лы, 2 ил.

Изобретение относится к оптическим сенсорам и может быть использовано для аналитических целей, таких как детектирование различных веществ или иных наноразмерных объектов и определение концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света.

Комбинационное рассеяние света, усиленное поверхностью (SERS), проявляется в увеличении интенсивности спектральных линий (рамановского сигнала) на молекулах, адсорбированных на частицах или шероховатых поверхностях некоторых металлов (например, Ag, Au или Си) с нанометровыми размерами (10-100 нм) [1-3] и используется для детектирования различных веществ методом спектроскопии комбинационного рассеяния света.

Известно техническое решение, в котором предложена подложка для использования в спектроскопии комбинационного рассеяния, усиленного поверхностью, включающее области, периодически расположенные на поверхности подложки и состоящие из осажденных частиц золота [4]. Данная структура усиливает рамановский сигнал и технологически может хорошо воспроизводится с использованием технологии микроэлектроники. Однако она очень сложна в изготовлении и экономически затратна, так как требует использования трудоемкого процесса фотолитографии.

Известно другое техническое решение, в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, содержащая полупроводниковую подложку, сформированные на ней нитевидные кристаллы, покрытые пленкой SERS-чувствительного металла выбранного из группы, состоящей из серебра, золота, платины [5]. Однако недостатком такого рода подложки является неизбежно высокое поглощение падающего света а, следовательно, она менее чувствительна и может требовать использования более мощного лазера, что может приводить к деструкции исследуемого объекта.

Известно еще одно техническое решение, в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, содержащая собственно подложку и множество вертикальных удлиненных элементов, простирающихся от подложки, причем каждый элемент имеет наконечник из SERS-чувствительного металла, причем элементы располагаются на подложке с плотностью не менее 1×108 удлиненных элементов на см2 [6]. Однако недостатком такого рода подложки также является неизбежно высокое поглощение падающего света а, следовательно, она менее чувствительна. К тому же при размещении на ней исследуемого объекта элементы склонны к хаотическому слипанию, что неизбежно ведет к невоспроизводимости результатов измерений.

Наиболее близким техническим решением является «Возобновляемая подложка для детектирования поверхностно-усиленного рамановского рассеяния» по патенту России [7], в котором предложена подложка для исследований методом усиленного поверхностью комбинационного рассеяния, включающая твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, зеркальный слой, промежуточный слой оптически прозрачного диэлектрика, SERS-активный слой из наночастиц и пассивирующий слой оптически прозрачного диэлектрика поверх SERS-активного слоя из наночастиц. Главным недостатком данного технического решения является то, что SERS-активный слой из наночастиц состоит из определенного SERS-активного металла, например, серебра, который имеет плазмон на определенной частоте. Как результат высокое усиление рамановского сигнала в таком случае возможно, только при использовании лазеров с длиной волны, попадающей в определенный узкий диапазон. Это накладывает ограничения на номенклатуру веществ, которые могут быть изучены с использованием такой SERS-подложки, поскольку для изучения различных веществ длину волны лазера необходимо подбирать.

Задача изобретения - это увеличение чувствительности SERS-подложки и расширение номенклатуры изучаемых веществ благодаря расширению диапазона длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал.

Для достижения этого предлагается устройство усиления комбинационного рассеяния света, включающее твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя и отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем.

Таким образом, отличительными признаками изобретения является то, что устройство содержит второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя и отделенного от первого SERS-активного слоя вторым оптическим прозрачным слоем. Часто в рамановской спектроскопии при исследовании веществ наблюдается явление флуоресценции, которое перекрывает рамановский сигнал, делая невозможным увидеть пики от исследуемого вещества и, тем самым, его идентифицировать. В этом случае используют лазер с другой длиной волны, для которой данного явления не наблюдается. SERS эффект связан с плазмонным резонансом SERS-активного слоя, выполненного из массива наночастиц, поэтому чтобы иметь хорошее усиление рамановского сигнала, в зависимости от материала этого слоя также необходимо использовать лазер с соответствующей ему длиной волны. Было обнаружено, что при использовании двух SERS-активных слоев из двух разных материалов, разделенных вторым оптическим прозрачным слоем, причем второй SERS-активный слой, выполненный из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя, прозрачность такой структуры остается высокой, а рамановский сигнал на такой подложке дополнительно увеличивается, при использовании и лазера с длиной волны близкой плазмонному резонансу первого SERS-активного слоя, и лазера с длиной волны близкой плазмонному резонансу второго SERS-активного слоя. Таким образом, диапазон длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал расширяется.

Такая совокупность отличительных признаков позволяет устранить недостатки способа-прототипа и достичь указанного технического результата, а именно, данное устройство позволяет дополнительно усиливать рамановский сигнал, а, следовательно, повысить чувствительность SERS-подложки, и расширить диапазон длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал, а, следовательно, расширить номенклатуру изучаемых веществ.

Целесообразно, чтобы отражающий слой выполнить из SERS-активного материала, поскольку экспериментально было обнаружено, что взаимодействие плазмонных поляритонов, локализованных вблизи наночастиц, с отражающим слоем позволяет, по меньшей мере, на порядок усилить SERS-сигнал от исследуемого вещества. Таким образом, отличительным признаком изобретения является то, что отражающий слой выполняется из SERS-активного материала.

Известно, что наиболее сильным эффектом усиления рамановского сигнала обладают металлы Ag, Cu, Au или сплавы на их основе, поэтому желательно чтобы, отражающий слой был из Ag, Au, Cu или сплавов на их основе. Таким образом, отличительным признаком изобретения является то, что материал отражающего слоя выбирается из группы Ag, Au, Си или сплавов на их основе.

Предпочтительно, чтобы толщина первого оптически прозрачного слоя не превышала 30 нм, что обусловлено ограниченным дальнодействием плазмонных поляритонов, локализованных вблизи наночастиц. Известно, что на расстоянии свыше 30 нм от SERS-чувствительного материала эффект усиления рамановского сигнала резко ослабевает.Таким образом, отличительным признаком изобретения является то, что толщина первого оптически прозрачного слоя не превышает 30 нм.

Возможно, чтобы толщина первого оптически прозрачного слоя была равна kλ/(2n), где λ - длина волны падающего излучения, n - показатель преломления материала оптически прозрачного слоя, k - натуральные числа, поскольку в этом случае достигается интерференционное сложение волны, отраженной от SERS-активного слоя, выполненного из массива наночастиц, и волны, отраженной от отражающего слоя, что позволяет усилить рамановский сигнал в несколько раз. Таким образом, отличительным признаком изобретения является то, что толщина первого оптически прозрачного слоя выбирается равной kλ/(2n).

Поскольку, как уже отмечалось, сильным эффектом усиления рамановского сигнала обладают металлы Ag, Cu, Au или сплавы на их основе, предпочтительно чтобы, SERS-активные слои, состоящие из массива наночастиц, выполнялись из материала, выбираемого из группы Ag, Au, Cu или сплавов на их основе. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои, состоящие из массива наночастиц, выполняются из материала, выбираемого из группы Ag, Au, Cu или сплавов на их основе.

Целесообразно, чтобы SERS-активные слои состояли из массива частиц со средним размером 10-100 нм, поскольку известно, что размер частиц влияет на положение плазмонного резонанса, а это позволяет настраивать подложку для использования в спектроскопии усиленного поверхностью комбинационного рассеяния под конкретное исследуемое вещество с целью обеспечения максимальной ее чувствительности. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои состоят из массива частиц со средним размером 10-100 нм.

Полезно, когда SERS-активные слои состоят из разных SERS-активных материалов, поскольку это расширяет возможности использования SERS-подложки для исследования различных веществ. Выявлено, что комбинирование этих материалов позволяет существенно расширить диапазон длин волн, в котором наблюдается рамановское усиление. Таким образом, отличительным признаком изобретения является то, что SERS-активные слои состоят из разных SERS-активных материалов.

По упомянутой причине также полезно, когда массив частиц в SERS-активном слое состоит из частиц разных SERS-активных материалов. Таким образом, отличительным признаком изобретения является то, что массив частиц в SERS-активном слое состоит из частиц разных SERS-активных материалов.

Целесообразно, чтобы толщина второго оптически прозрачного слоя также не превышала 30 нм по той же причине резкого ослабления эффекта усиления рамановского сигнала, что обусловлено ограниченным дальнодействием плазмонных поляритонов, локализованных вблизи наночастиц. Таким образом, отличительным признаком изобретения является то, что толщина второго оптически прозрачного слоя не превышает 30 нм.

В некоторых случаях, когда второй SERS-активный слой состоит из легко подвергаемого коррозии материала, предпочтительно, он будет покрыт тонким оптически прозрачным защитным слоем, толщина которого не превышает 30 нм по той же указанной выше причине. Таким образом, отличительным признаком изобретения является то, что второй SERS-активный слой покрыт тонким оптически прозрачным защитным слоем, толщина которого не превышает 30 нм.

На фиг. 1 приведена предлагаемая подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света, где: 1 - исходная подложка; 2 - отражающий слой; 3 - первый оптически прозрачный слой; 4 - SERS-активный слой, состоящий из массива наночастиц; 5 - второй оптически прозрачный слой; 6 - второй SERS-активный слой, состоящий из массива наночастиц со средним размером частиц равным или меньше, чем у первого SERS-активного слоя.

На фиг.2 показаны графики, которые получены при длинах волн лазера 488 нм и 633 нм, характерных зависимостей интенсивности рамановского сигнала пленки аморфного углерода на обычной подложке 7, SERS-подложке 8, изготовленной в соответствие с прототипом, и предлагаемой SERS-подложке 9 со вторым SERS-активным слоем из серебряных наночастиц со средним размером 7 нм, отделенным вторым оптически прозрачным слоем от первого SERS-активного слоя из золотых наночастиц со средним размером 40 нм. Известно, что аморфный углерод слабо идентифицируется спектроскопией комбинационного рассеяния света. Как можно видеть на фиг. 2, на спектре от пленки аморфного углерода на обычной подложке 7 не удается разрешить хоть сколько-нибудь заметных пиков, в то же время на SERS-подложке 8, изготовленной в соответствие с прототипом, хорошо различимы D и G пики, характерные для данного материала. Но еще более заметное усиление рамановского сигнала (9) наблюдается на устройстве, выполненном в соответствие с предлагаемым техническим решением, причем, как можно видеть и при длине волны лазера 488 нм, и при длине волны 633 нм.

Проведенные патентные исследования показали, что совокупность признаков предлагаемого изобретения является новой, что доказывает новизну устройства усиления комбинационного рассеяния света. Кроме того, патентные исследования показали, что в научно-технических источниках отсутствуют данные, оказывающие влияние отличительных признаков заявляемого изобретения на достижение технического результата.

Пример 1. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную подложку монокристаллического кремния, на которой есть слой серебра толщиной 50 нм, слой SiO2 толщиной 20 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 20 нм.

Пример 2. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную стеклянную подложку, на которой есть слой серебра толщиной 200 нм, слой SiO2 толщиной 20 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц золота со средним размером 20 нм.

Пример 3. Подложка для использования в спектроскопии усиленного поверхностью комбинационного рассеяния света представляет собой исходную стеклянную подложку, на которой есть слой серебра толщиной 200 нм, слой SiO2 толщиной 130 нм, SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 40 нм, второй оптически прозрачный слой толщиной 10 нм, конформно покрывающий частицы первого SERS-активного слоя, и второй SERS-активный слой, состоящий из массива наночастиц серебра со средним размером 20 нм.

Настоящее изобретение позволяет устранить недостатки способа-прототипа, обеспечивая дополнительное усиление рамановского сигнала, а, следовательно, повышение чувствительности SERS-подложки и расширение номенклатуры изучаемых веществ благодаря расширению диапазона длин волн, при которых SERS-подложка сохраняет свою эффективность усиливать рамановский сигнал.

Источники информации:

1. М. Moskovits, Rev. Mod. Phys., 57 (1985) 783;

2. К. Kneipp, Н. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett., 76

(1996) 2444;

3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett., 78

(1997) 1667; S. Nie, S. R. Emory, Science, 275 (1997) 1102

4. Патент США 9013689

5. Патент РФ 2574176

6. Патент США 8767202

7. Патент РФ 2543691 - прототип


УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА
УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА
УСТРОЙСТВО УСИЛЕНИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 64.
31.05.2019
№219.017.7122

Энергетически автономное устройство для обнаружения возгораний

Изобретение относится к системам пожарной безопасности, а именно к энергетически автономному устройству для обнаружения возгораний. Устройство содержит температурный чувствительный элемент (1), источник неэлектрической энергии (2), преобразователь неэлектрической энергии в электрическую (3),...
Тип: Изобретение
Номер охранного документа: 0002689633
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.7636

Способ термической очистки углеродных нанотрубок

Изобретение предназначено для термической очистки углеродных нанотрубок. Очищение нанотрубок происходит при контролируемом термическом отжиге на воздухе. Способ термической очистки углеродных нанотрубок осуществляется при контроле процесса отжига нанотрубок путем построения графика зависимости...
Тип: Изобретение
Номер охранного документа: 0002690991
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.80f3

Способ формирования глубокопрофилированных кремниевых структур

Суть настоящего изобретения состоит в формировании глубокопрофилированных кремниевых структур последовательными операциями изотропного и анизотропного травления, причем операцию фотолитографии выполняют на кремниевой структуре, используя фоторезист с гидроизоляционными свойствами. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002691162
Дата охранного документа: 11.06.2019
22.06.2019
№219.017.8e8c

Твердотельный датчик линейных ускорений

Изобретение относится к измерительной технике и может применяться в микромеханических датчиках линейных ускорений. Устройство содержит основание, инерционную массу, упругие элементы. Сформированы две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей. Гребенки...
Тип: Изобретение
Номер охранного документа: 0002692122
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8ea7

Планарный двухспектральный фотоэлектронный умножитель

Изобретение относится к вакуумной фотоэмиссионной электронике и может быть использовано при конструировании приборов и устройств ночного и ультрафиолетового видения. Фотоэлектронный умножитель состоит из фотокатода на основе полупроводниковых, в том числе и наноструктурированных материалов,...
Тип: Изобретение
Номер охранного документа: 0002692094
Дата охранного документа: 21.06.2019
12.08.2019
№219.017.bedf

Устройство для подключения насоса вспомогательного кровообращения к желудочку сердца человека

Изобретение относится к медицинской технике, а именно к устройству для подключения насоса вспомогательного кровообращения к желудочку сердца человека. Устройство содержит фланцевый патрубок, тканую манжету, хомут и входную канюлю насоса вспомогательного кровообращения. Фланцевый патрубок имеет...
Тип: Изобретение
Номер охранного документа: 0002696685
Дата охранного документа: 05.08.2019
15.08.2019
№219.017.bfe9

Рентгеновский источник и способ генерации рентгеновского излучения

Изобретение относится к рентгеновской технике. Технический результат - повышение интенсивности рентгеновского излучения, увеличение продолжительности срока эксплуатации прибора, расширение перечня излучаемых длин волн, обеспечение возможности выбора количества длин волн и формы рентгеновского...
Тип: Изобретение
Номер охранного документа: 0002697258
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.d016

Способ формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек

Изобретение относится к производству интегральных микросхем и микроэлектромеханических приборов и может быть использовано для формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек без использования фотошаблонов и фоторезистивных масок. Способ...
Тип: Изобретение
Номер охранного документа: 0002700231
Дата охранного документа: 13.09.2019
21.10.2019
№219.017.d880

Способ синхронизации в системах с прямым расширением спектра

Изобретение относится к области радиосвязи и может быть использовано для синхронизации фазоманипулированных сигналов в системах связи, работающих в условиях значительного превышения уровня помех и шума над уровнем информационного сигнала. Техническим результатом является избавление от...
Тип: Изобретение
Номер охранного документа: 0002703509
Дата охранного документа: 18.10.2019
26.10.2019
№219.017.daf8

Устройство и способ ультразвукового диспергирования жидкостей

Устройство предназначено для приготовления, а также поддержания во взвешенном состоянии дисперсий в сменных емкостях небольшого объема типа шприцев, пробирок с патрубком в дне или аналогичных и дает возможность в процессе работы подавать в емкость или забирать из нее обрабатываемую жидкость или...
Тип: Изобретение
Номер охранного документа: 0002704189
Дата охранного документа: 24.10.2019
Показаны записи 31-33 из 33.
02.04.2020
№220.018.1291

Способ скринингового определения вероятности наличия рака молочной железы

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия рака молочной железы (РМЖ) у пациенток европеоидной популяции. Измеряют уровень биомаркеров в образце биологической жидкости, полученном у субъекта:...
Тип: Изобретение
Номер охранного документа: 0002718272
Дата охранного документа: 01.04.2020
02.04.2020
№220.018.12ca

Способ скринингового определения вероятности наличия рака мочевого пузыря

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия рака мочевого пузыря (РМП) у пациентов европеоидной популяции. Измеряют уровень биомаркеров в образце биологической жидкости, полученном у субъекта: sVCAM.1,...
Тип: Изобретение
Номер охранного документа: 0002718284
Дата охранного документа: 01.04.2020
07.07.2020
№220.018.3043

Тканеинженерная конструкция для регенерации сердечной ткани

Изобретение относится к медицине и касается тканеинженерной конструкции для регенерации сердечной мышцы, включающей электропроводящий слой композиционного наноматериала из бычьего сывороточного альбумина и наполнителя из одностенных углеродных нанотрубок, содержащей конструкцию из слоев с общей...
Тип: Изобретение
Номер охранного документа: 0002725860
Дата охранного документа: 06.07.2020
+ добавить свой РИД