×
09.06.2019
219.017.7636

Результат интеллектуальной деятельности: СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для термической очистки углеродных нанотрубок. Очищение нанотрубок происходит при контролируемом термическом отжиге на воздухе. Способ термической очистки углеродных нанотрубок осуществляется при контроле процесса отжига нанотрубок путем построения графика зависимости массы очищаемых углеродных нанотрубок от времени их отжига, с измерением массы очищаемых нанотрубок в каждый заданный момент их отжига. Отжиг очищаемых углеродных нанотрубок проводится вплоть до выхода на плато кривой зависимости массы очищаемых углеродных нанотрубок от времени их нагрева. Регистрация выхода на плато кривой зависимости массы очищаемых углеродных нанотрубок от времени их отжига происходит по величине угла наклона касательной к вышеуказанной кривой в области ее выхода на плато, причем угол наклона касательной должен находиться в пределах от 0 до 1°. Технический результат – улучшение качества процесса и надежности термической очистки углеродных нанотрубок. 2 ил.

Изобретение относится к области нанотехнологии, а конкретно, к изготовлению наноматериалов. Изобретение предназначено для термической очистки углеродных нанотрубок путем отжига на воздухе при контроле процесса отжига.

В случае использовании углеродных нанотрубок для изготовления материалов медицинского применения необходимо считаться с проблемой недостаточной чистоты применяемых нанотрубок, что может иметь вредные последствия для здоровья пациентов, подвергнутых оперативному лечению с использованием таких материалов. Вследствие этого возникает необходимость в дополнительной очистке нанотрубок перед их применением. Особую роль это играет при изготовлении нанокомпозитных биоконструкций, формируемых экологически чистым бесконтактным лазерным методом, так как они предназначены для использования при эндопротезировании суставов человеческого организма, а также при имплантации в сердечно-сосудистой системе [1].

Известен способ термической очистки многослойных углеродных нанотрубок от примесных углеродных материалов путем селективного окисления нанотрубок при их отжиге с температурой ~ 700°, с размещением очищаемых углеродных нанотрубок во вращающейся кварцевой трубке при продуве воздухом, что позволяет отделять нанотрубки от примесных углеродных материалов за счет более высокой скорости травления этих материалов, чем у нанотрубок [2].

Недостатки такого способа термической очистки углеродных нанотрубок заключаются в сложности конструкции применяемого устройства для очистки нанотрубок и, вследствие этого, в возможности полного или частичного разлета очищаемых углеродных нанотрубок при разгерметизации кварцевой трубки, а также в отсутствии надежного контроля процесса и точной регистрации продолжительности отжига углеродных нанотрубок.

Известен способ термической очистки однослойных углеродных нанотрубок от примесей аморфного углерода, мелких аморфных углеродных листов и металлосодержащих остаточных частиц катализатора путем отжига при температуре от 600 до 1000°С в отжигающем газе, состоящим из смеси углекислого газа, инертных газов, азота и их сочетаний, водяного пара, а также путем отжига в вакууме [3].

К недостаткам указанного способа термической очистки в отжигающем газе углеродных нанотрубок можно отнести трудность подготовки и применения смеси газов сложного состава, заполняющих герметичный аппарат, предназначенный для эксплуатации в напряженном тепловом режиме, а также в отсутствии надежного контроля процесса и точной регистрации продолжительности отжига углеродных нанотрубок.

Наиболее близким техническим решением к заявляемому способу термической очистки углеродных нанотрубок является способ очистки многослойных углеродных нанотрубок от примесных углеродных материалов, включающий отжиг при температуре прогрева от 600 до 1000°С, в присутствии воздуха или газообразного кислорода [4].

Недостатки такого способа термической очистки углеродных нанотрубок заключаются в необходимости использования достаточно высокой температуры нагревания очищаемых углеродных нанотрубок, что увеличивает возможность разрушения части пригодного для использования очищенного нанотрубочного материала и в отсутствии надежного контроля процесса очистки углеродных нанотрубок и точной регистрация завершения процесса очистки нанотрубок.

Задачей предлагаемого изобретения является улучшение качества процесса и надежности термической очистки углеродных нанотрубок, применяемых в медицинских целях.

Предлагаемый способ термической очистки углеродных нанотрубок предполагает контроль процесса отжига, который предусматривает измерения массы очищаемых углеродных нанотрубок в заданные моменты времени их отжига. Регистрация окончания процесса отжига очищаемых нанотрубок осуществляется путем построения, в заданные моменты времени отжига, графиков зависимости массы очищаемых углеродных нанотрубок от времени их отжига. Угол наклона касательной к этим кривым в области выхода их на плато при этом должен находиться в пределах от 0 до 1°.

Предлагаемый способ термической очистки углеродных нанотрубок состоит в последовательности следующих этапов очистки углеродных нанотрубок путем отжига на воздухе.

Первый этап термической очистки углеродных нанотрубок заключается во взвешивании очищаемых нанотрубок и пустого фарфорового тигля, предназначенного для их размещения, а также тигля с размещенными нем очищаемыми нанотрубками. Точность взвешивания тигля с очищаемыми нанотрубками, пустого тигля и очищаемых нанотрубок должна составлять ±1% или менее. Начальная масса очищаемых нанотрубок при этом находится как разница между массой тигля с очищаемыми нанотрубками и массой пустого тигля, при точности измерений ±1% или менее.

Второй этап термической очистки углеродных нанотрубок предусматривает размещение тигля с находящимися в нем очищаемыми нанотрубками в термостате, либо в другом аналогичном устройстве с рабочей температурой до 350°С и выше. В процессе очистки нанотрубок на воздухе температура в нагретом термостате или аналогичном устройстве должна поддерживаться постоянной с точностью ±1-3%.

Третий этап термической очистки очищаемых нанотрубок предусматривает извлечение тигля с нанотрубками из термостата или аналогичного устройства в каждый заданный момент отжига. После извлечения и остывания тигля с нанотрубками производится его взвешивание, с определением массы очищаемых нанотрубок путем вычитания из значения массы заполненного тигля, массы пустого тигля.

На четвертом этапе термической очистки углеродных нанотрубок осуществляется процедура построения графиков зависимости массы очищаемых нанотрубок от времени их отжига для каждого заданного момента отжига, вплоть до его окончания при выходе на плато кривой на графике зависимости массы очищаемых углеродных нанотрубок от времени их отжига. Регистрация окончания процесса отжига осуществляется путем определения угла наклона касательной к кривой на графике зависимости массы очищаемых углеродных нанотрубок от времени их отжига, в области выхода на плато указанной кривой, причем угол наклона касательной к этой кривой должен находиться в пределах от 0 до 1°.

На фиг. 1 показан график (1) зависимости относительной массы очищаемых однослойных углеродных нанотрубок типа НаноКарбЛайт, с начальной массой 280 мг, от времени отжига на воздухе в муфельной печи, при температуре 350°С. Масса указанных углеродных нанотрубок определялась на третьем этапе их термической очистки, после осуществления процедуры размещения, нагревания и извлечения тигля с очищаемыми нанотрубками из термостата или аналогичного устройства на втором этапе термической очистки, а график зависимости относительной массы указанных нанотрубок от времени их отжига строился на четвертом этапе отжига нанотрубок.

Выбор значения температуры отжига на воздухе очищаемых однослойных углеродных нанотрубок, равной 350°С, связан с тем, что ее понижение затягивает длительность процесса отжига нанотрубок, а повышение температуры отжига выше 350°С снижает выход очищенных нанотрубок.

На фиг. 1 показан также вид касательной (2) к указанной кривой, в области выхода этой кривой на плато. Угол наклона касательной к этой кривой в области выхода на плато, определенный согласно описания четвертого этапа очистки, близок к нулю, т.е эта касательная практически параллельна кривой в области ее выхода на плато.

На фиг. 2 показаны полученные на четвертом этапе термической очистки графики зависимости относительной массы трех типов очищаемых углеродных нанотрубок и технической сажи К-354 от времени их отжига на воздухе в муфельной печи, при температуре 350°С. График (1) получен для многослойных углеродных нанотрубок МИЭТ, с начальной массой нанотрубок 190 мг, график (2) - для технической сажи К-354, с начальной массой 200 мг, график (3) - для многослойных углеродных нанотрубок Таунит с начальной массой 320 мг. Показанный для сравнения график (4) получен для однослойных углеродных нанотрубок типа НаноКарбЛайт”, с начальной массой 280 мг. На фиг. 2 показан также вид касательной (5) к кривой графика (4).

Отчетливая область выхода на плато кривых указанных на фиг. 2, наблюдалась только для очищаемых углеродных нанотрубок типа НаноКарбЛайт, при выходе очищенных нанотрубок, по завершению процесса отжига ~ 60%.

Приведенные данные подтверждают эффективность заявляемого способа термической очистки углеродных нанотрубок. При этом, в отличие от прототипа, используется пониженная температура нагревания очищаемых углеродных нанотрубок, что устраняет возможность разрушения части пригодного для использования очищенного нанотрубочного материала, а также обеспечивает надежный контроль и точную регистрацию завершения процесса очистки углеродных нанотрубок.

Выбор предлагаемого способа термической очистки углеродных нанотрубок на воздухе определяется его простотой и эффективностью. Этот способ термической очистки углеродных нанотрубок отличается доступностью и приемлемой стоимостью, так как не требует применения сложных высокотемпературных нагревающих устройств и использования для отжига нанотрубок дорогостоящих материалов. Регистрация выхода на плато кривых на графиках зависимости массы очищаемых углеродных нанотрубок от времени их отжига по углу наклона касательной к этим кривым в области выхода их на плато характерна простой исполнения. Ограничение значения угла наклона касательной к кривой диапазоном от 0 до 1° достаточно для оптимального определения длительности процесса термической очистки углеродных нанотрубок.

Благодаря новому техническому решению по способу термического отжига углеродных нанотрубок, с обеспечением надежного контроля и точной регистрацией завершения процесса очистки углеродных нанотрубок, обеспечивается возможность повышения безопасности применения и надежности очистки нанокомпозитных конструкций на нанотрубочной основе, изготавливаемых лазерным методом и предназначенных для протезирования и замены фрагментов вышедших из строя суставов и имплантации органов и других частей сердечно-сосудистой системы человеческого организма.

Источники информации

1. A.Yu. Gerasimenko, O.E. Glukhova, V. Savostyanov, V M. Podgaetsky. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures // J. Biomed. Opt., v. 22, No. 6, p. 065003-1-7.

2. Y.S. Park, Y.C. Choi, K.S. Kimb, D.-C. Chung, D.J. Bae, K.H. An, S.C. Lima, X.Y. Zhu, Y.H. Lee. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing // Carbon, 2001, v. 39, No. 5, p. 655-659.

3. Патент США 6752977.

4. Патент США 5641466 - прототип.

Способ термической очистки углеродных нанотрубок от примесных углеродных материалов путем отжига в присутствии газообразного окислителя, отличающийся тем, что отжиг на воздухе очищаемых нанотрубок осуществляется с контролем процесса отжига путем измерения массы очищаемых углеродных нанотрубок в заданные моменты времени отжига и регистрации окончания процесса отжига очищаемых нанотрубок путем определения угла наклона касательной к кривым зависимости массы очищаемых углеродных нанотрубок от времени их отжига путем построения, в заданные моменты времени отжига, графиков зависимости массы очищаемых углеродных нанотрубок от времени их отжига, причем угол наклона касательной к этим кривым в области выхода их на плато должен находиться в пределах от 0 до 1°.
СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ УГЛЕРОДНЫХ НАНОТРУБОК
Источник поступления информации: Роспатент

Показаны записи 1-10 из 64.
20.10.2015
№216.013.8505

Способ и устройство детоксикации организма

Группа изобретений относится к медицинской технике, нефрологии, урологии, токсикологии и реаниматологии, системам заместительной терапии (ЗТ) и детоксикации и может быть использована в лечении больных с почечной недостаточностью, для замещения утраченной функции выведения метаболитов и...
Тип: Изобретение
Номер охранного документа: 0002565656
Дата охранного документа: 20.10.2015
20.01.2016
№216.013.9ff2

Способ изготовления электронных узлов на гибком носителе без процессов пайки и сварки

Изобретение относится к технологии производства многокристальных модулей, микросборок и модулей на основе печатных плат с внутренним монтажом компонентов. Технический результат - создание способа производства максимально компактных, надежных, быстродействующих и более экономичных в...
Тип: Изобретение
Номер охранного документа: 0002572588
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c2f7

Фотокатодный узел

Изобретение относится к фотокатодным узлам вакуумных высокочувствительных, термо- и радиационно-стойких приемников излучений и приемников изображений для спектрального диапазона 0,19-0,45 мкм. Технический результат - расширение спектральной области чувствительности к электромагнитному...
Тип: Изобретение
Номер охранного документа: 0002574214
Дата охранного документа: 10.02.2016
10.06.2016
№216.015.498f

Источник рентгеновского излучения

Изобретение относится к области рентгеновской техники. Источник рентгеновского излучения содержит автокатод, рабочей областью которого является кромка круглого отверстия в проводящем слое, а антикатод (анод) выполнен симметричным относительно оси отверстия автокатода в виде фигуры вращения и...
Тип: Изобретение
Номер охранного документа: 0002586621
Дата охранного документа: 10.06.2016
26.08.2017
№217.015.dd03

Способ измерения механических напряжений в мэмс-структурах

Использование: для измерения механических напряжений в МЭМС структурах. Сущность изобретения заключается в том, что способ измерения механических напряжений в МЭМС структурах включает формирование между пленкой-покрытием и основой промежуточного слоя, при этом промежуточный слой может иметь...
Тип: Изобретение
Номер охранного документа: 0002624611
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f120

Электронная система компенсационного акселерометра

Изобретение относится к области измерительной техники, а именно к устройствам для построения электронной системы преобразователя линейных ускорений. Электронная система компенсационного акселерометра содержит дифференциальный емкостный преобразователь, двухфазный генератор переменного тока,...
Тип: Изобретение
Номер охранного документа: 0002638919
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.009e

Суперконденсатор на основе кмоп-технологии

Изобретение относится к твердотельному суперконденсатору и может быть использовано в устройствах хранения энергии разнообразных интегральных микросхем. Суперконденсатор содержит два электрода, размещенный между ними диэлектрический слой, конформно расположенный на нижнем электроде, при этом...
Тип: Изобретение
Номер охранного документа: 0002629364
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0b19

Устройство для защиты от несанкционированного прослушивания разговоров в помещении

Изобретение относится к области телефонной связи. Техническим результатом является повышение эффективности защиты речевой информации от утечки по техническим каналам. Упомянутый технический результат достигается тем, что в устройстве для защиты от несанкционированного прослушивания разговоров в...
Тип: Изобретение
Номер охранного документа: 0002632188
Дата охранного документа: 04.10.2017
20.01.2018
№218.016.180e

Способ извлечения галлия из порошковых галлийсодержащих отходов

Изобретение относится к области металлургии редких металлов, а более конкретно к способам извлечения галлия из твердых порошкообразных галлийсодержащих материалов. Порошкообразные галлийсодержащие отходы подвергают варке в каустической щелочи при температуре 350-400°С, затем растворяют в вводе,...
Тип: Изобретение
Номер охранного документа: 0002635585
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1972

Биоприпой для лазерной сварки биологических тканей

Изобретение относится к медицине и касается биоприпоя для лазерной сварки биологических тканей. Биоприпой содержит водную дисперсионную основу белка альбумина. При этом в его состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002636222
Дата охранного документа: 21.11.2017
Показаны записи 1-10 из 23.
27.01.2013
№216.012.1ebb

Способ получения биосовместимого наноструктурированного композиционного электропроводящего материала

Изобретение относится к способу получения биосовместимого наноструктурированного композиционного электропроводящего материала. Способ включает приготовление ультрадисперсной суспензии из карбоксиметилцеллюлозы и углеродных нанотрубок с механической системой структурирования углеродных...
Тип: Изобретение
Номер охранного документа: 0002473368
Дата охранного документа: 27.01.2013
10.04.2014
№216.012.afc3

Устройство для беспроводной чрескожной передачи энергии

Изобретение относится к области медицинской техники и может быть использовано для энергообеспечения имплантируемых медицинских приборов, в том числе кардиостимуляторов, имплантируемых кардиостимуляторов/дефибрилляторов, систем вспомогательного кровообращения, кохлеарных имплантатов и других....
Тип: Изобретение
Номер охранного документа: 0002510710
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.df0d

Способ формирования электропроводящих слоев на основе углеродных нанотрубок

Заявляемое изобретение относится к области электрической техники, в частности к способам создания электропроводящих слоев, применяемых в широких областях техники, в том числе в электронике или электротехнике, и может быть использовано для создания проводящих соединений в микросхемах. Способ...
Тип: Изобретение
Номер охранного документа: 0002522887
Дата охранного документа: 20.07.2014
10.12.2014
№216.013.0ce9

Жидкостный наносветовод

Изобретение относится к области лазерной техники, в частности к устройствам для передачи лазерного излучения. Устройство содержит полый наносветовод, сердцевина которого заполнена водой или водным раствором с показателем преломления, большим показателя преломления оболочки. На торцах...
Тип: Изобретение
Номер охранного документа: 0002534722
Дата охранного документа: 10.12.2014
27.08.2015
№216.013.7448

Лазерный формирователь объемных нанокомпозитов

Изобретение относится к средствам для изготовления материалов, позволяющих компенсировать врожденные пороки развития человека и животных. Предложенный лазерный формирователь объемных нанокомпозитов содержит столик, на котором установлен сосуд для размещения водно-белковой дисперсии углеродных...
Тип: Изобретение
Номер охранного документа: 0002561343
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.7cc5

Способ получения полимерных микросфер, содержащих квантовые точки

Настоящее изобретение относится к способу получения полимерных микросфер, содержащих квантовые точки. Описан способ получения полимерных микросфер, содержащих квантовые точки, включающий приготовление раствора квантовых точек в органическом растворителе, содержащем катионактивное ПАВ,...
Тип: Изобретение
Номер охранного документа: 0002600108
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.a206

Способ получения наноструктурированного композиционного электропроводящего покрытия

Изобретение относится к области биомедицинской техники. Описан способ получения наноструктурированного композиционного электропроводящего покрытия, включающий нанесение ультрадисперсионной суспензии из карбоксиметилцеллюлозы и углеродных нанотрубок на подложку, затем суспензию облучают лазером...
Тип: Изобретение
Номер охранного документа: 0002606842
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa35

Устройство для лазерного сваривания рассеченных биологических тканей

Изобретение относится к устройствам лазерной медицины и может быть использовано для лазерного сваривания рассеченных биологических тканей. В устройстве установлены основной и вспомогательный лазерные излучатели, соединенные оптоволоконным выводом излучения с оптоволоконным смесителем лазерного...
Тип: Изобретение
Номер охранного документа: 0002611918
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.c578

Устройство для беспроводного чрескожного энергообеспечения имплантируемых медицинских приборов

Изобретение относится к медицинской технике, а именно к средствам энергообеспечения имплантируемых медицинских приборов. Устройство включает передающий модуль с катушкой индуктивности, генерирующей переменное магнитное поле, принимающий модуль с катушкой индуктивности и модуль для определения...
Тип: Изобретение
Номер охранного документа: 0002618204
Дата охранного документа: 02.05.2017
19.01.2018
№218.016.0a18

Способ лазерной обработки нанокомпозитного покрытия имплантанта связки коленного сустава

Изобретение относится к медицине и может бы использовано для формирования нанокомпозитного покрытия имплантата связки коленного сустава. Для этого проводят следующие стадии: 1) подготавливают поверхность заготовки имплантата путем обезвоживания поверхности имплантата, с промывкой...
Тип: Изобретение
Номер охранного документа: 0002632114
Дата охранного документа: 02.10.2017
+ добавить свой РИД