×
10.07.2019
219.017.b163

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку органического растворителя и последующую высокотемпературную обработку инертного носителя при температуре 820-870°С. В качестве органических растворов используют экстракты соединений европия и/или церия, платины и/или палладия и висмута, которые смешивают в заданном соотношении, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия в количестве 96-98 мас.%, платины и/или оксида палладия е количестве 0,5-2 мас.% и оксида висмута в количестве 1,5-2 мас.%, Технический эффект - упрочнение сцепления активного слоя с поверхностью инертного носителя за счет введения оксида висмута в качестве флюса, что повышает эффективность и длительность работы катализатора. 6 з.п. ф-лы, 9 пр.

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания (ДВС).

Известны способы получения катализаторов для очистки выхлопных газов ДВС, содержащих металлы платиновой группы, например платину, палладий, родий, осмий, нанесенные методом пропитки на инертные носители, например, такие, как пористая керамика (оксид алюминия), сталь, в том числе в виде фольги.

Известен способ получения платинового катализатора для очистки выхлопных газов ДВС (патент РФ №2307709, опубл. 10.10.2007 г.), предусматривающий нанесение слоя оксида алюминия, содержащего каталитически активный компонент - платину, на предварительно подготовленный инертный стальной носитель, с последующими операциями сушки, высокотемпературной обработки пропитанного водным раствором носителя при 850-950°С в течение 10-20 ч, обработки ультразвуком частотой 18 кГц и дополнительной обработки поверхности инертного стального носителя в щелочном растворе КОН с концентрацией 10% в течение 30-60 мин для превращения оксидов поверхностного слоя в гидроксиды. Описанный процесс приготовления катализатора занимает не менее 25 часов.

К недостаткам способа относятся его многостадийность, высокая температура и длительность процесса.

Известен способ приготовления катализатора для очистки выхлопных газов ДВС (патент РФ №2005538, опубл. 15.01.1994 г.) путем нанесения методом пропитки на инертный носитель сначала оксида церия, а затем отдельно оксидов платины и родия из водных растворов их солей. Процесс осуществляют следующим образом. Стальную фольгу с содержанием хрома около 20% и алюминия около 5% гофрируют, сворачивают в блок и подвергают окислению на воздухе при 900-950°С. На термообработанный блок наносят покрытие из оксида алюминия в растворе едкого натра при непосредственном растворении в нем алюминиевой стружки при 60-80°С с последующей промывкой, сушкой и термообработкой при 500°С. Инертный носитель с покрытиием из оксида алюминия обрабатывают раствором нитрата церия, высушивают в течение 2 часов при температуре 100-120°С и прокаливают в течение 3 часов при температуре 450°С. Далее образец помещают в хлоридный раствор платины и родия, выдерживают в течение 20-24 часов, сушат при 100-120°С в течение 2 часов и восстанавливают благородные металлы в токе водорода при 400°С в течение 5 часов.

К недостаткам способа относятся многостадийность и длительность процесса, а также необходимость использования водорода, что влечет за собой повышенные требования со стороны техники безопасности.

Известен способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания (патент РФ №2169614, опубл. 27.06.2001 г.). В качестве компонентов активной фазы катализатор содержит оксид редкоземельного металла (РЗМ), в частности церия, и благородные металлы (БМ), в частности платину, палладий и родий. Процесс осуществляют следующим образом: инертный носитель, представляющий собой гофрированную и свернутую в блок ленту из стальной фольги, содержащей около 5% алюминия, подвергают высокотемпературной обработке при 850-920°С в токе воздуха или кислорода в течение 12-15 ч. Затем на обработанный инертный носитель методом пропитки наносят промежуточное покрытие из водно-спиртовой суспензии, содержащей гидроксид алюминия, азотнокислый алюминий и азотнокислый церий. Обработанный таким образом блок провяливают (сушат) в течение нескольких (около 5) часов при комнатной температуре и далее при температуре 100-120°С в течение 2 часов, после чего подвергают термообработке при 450°С в течение 2 часов. Затем на сформировавшееся промежуточное покрытие методом пропитки водными хлоридными растворами H2PtCl6, PdCl2 или RhCl3 наносят соли платины, палладия и родия. При необходимости введения в катализатор нескольких благородных металлов, например Pt-Rh, Pt-Pd или Pt-Pd-Rh, в пропиточный раствор вводят все исходные соединения благородных металлов одновременно. После этого образец высушивают при температуре 100-120°С и восстанавливают водородом при 350-400°С в течение 6 часов.

К недостаткам способа относятся многостадийность и длительность процесса (нанесение на инертный носитель промежуточного покрытия и многостадийная сушка промежуточного покрытия в различных температурных режимах; нанесение на промежуточное покрытие активной фазы из благородных металлов платиновой группы путем пропитки соответствующими растворами с последующей сушкой, восстановлением водородом при ступенчатом подъеме температуры и выдержкой при 400°С; при этом способ предусматривает нанесение на инертный носитель последовательно сначала оксида редкоземельного элемента - церия, а затем, на следующей стадии, - оксидов благородных металлов). Кроме того, необходимость использования водорода влечет за собой повышенные требования со стороны техники безопасности.

В качестве наиболее близкого аналога по технической сущности и назначению к заявляемому способу выбран способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания (патент РФ №2417123, опубл. 27.04.2011 г.), включающий пропитку инертного носителя растворами, содержащими одно или несколько соединений редкоземельных металлов и одно или несколько соединений благородных металлов платиновой группы, и высокотемпературную обработку пропитанного раствором инертного носителя, при этом в качестве растворов для пропитки инертного носителя используют органические растворы соединений европия и/или церия и органические растворы соединений платины и/или палладия, которые смешивают в соотношении, обеспечивающем содержание в твердой активной фазе катализатора платины и/или палладия 0,5-2 мас.% и оксида европия или церия 98-99,5 мас.%, затем органический растворитель отгоняют при температуре 70-100°С, а инертный носитель подвергают термообработке при температуре 600-700°С в течение 1-2 часов.

При этом в качестве органических растворов соединений европия и церия используют экстракты, полученные экстракцией смесью хлорида триалкилбензиламмония и ацетилацетона в бензоле или смесью ацетилацетона и дипиридила в бензоле из водных хлоридных растворов, содержащих ионы европия и церия, в качестве органических растворов соединений платины и палладия используют экстракты, полученные экстракцией триоктиламином в бензоле соединений платины и палладия из водных хлоридных растворов, содержащих ионы платины и палладия.

Основным недостатком указанного способа является невысокая адгезия активного слоя к поверхности инертного носителя, что приводит к снижению активности катализатора и потерям благородных металлов.

Задачей, решаемой предлагаемым изобретением, является повышение прочности сцепления активного слоя с инертным носителем и повышение эффективности катализатора.

Поставленная задача решается за счет того, что в способе получения катализатора для очистки выхлопных газов ДВС, включающем пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия, отгонку органического растворителя при нагревании и последующую высокотемпературную обработку инертного носителя, в отличие от известного способа, в раствор для пропитки инертного носителя дополнительно вводят органический раствор соединения висмута при соотношении компонентов раствора, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия в количестве 96-98 мас.%, платины и/или оксида палладия в количестве 0,5-2 мас.% и оксида висмута 1,5-2 мас.%, а высокотемпературную обработку инертного носителя ведут при температуре 820-870°С.

В качестве инертного носителя может служить любой пористый материал на основе оксидов кремния, алюминия, титана и др.

В заявляемом способе для пропитки инертного носителя используют смесь растворов в органическом растворителе, содержащую одновременно в заданном количестве РЗМ (европий Eu и/или церий Се), БМ (платину Pt и/или палладий Pd) и висмут Bi. После пропитки носитель нагревают при температуре 70-100°С для отгонки растворителя и прокаливают при температуре 820-870°С в течение 1-2 часов. В данном интервале температур происходит плавление оксида висмута, который надежно закрепляет частицы платины, оксидов европия, церия и палладия на поверхности инертного носителя.

В качестве органических растворов соединений европия и церия используют экстракты соединений европия и церия.

Для получения экстрактов соединений европия и церия используют соответственно исходные водные хлоридные растворы, содержащие Eu3+ или Се4+. Экстракцию европия осуществляют смесью хлорида триалкилбензиламмония и ацетилацетона в бензоле или смесью ацетилацетона и дипиридила в бензоле. Экстракцию церия осуществляют смесью капроновой кислоты и ацетилацетона в бензоле.

В качестве органических растворов соединений платины, палладия и висмута используют экстракты соединений платины, палладия и висмута.

Для получения экстрактов соединений платины, палладия и висмута используют соответственно исходные водные растворы, содержащие ионы платины или палладия в хлористоводородной кислоте и висмута в азотной кислоте. Экстракцию осуществляют раствором триоктиламина в бензоле.

Способ осуществляют следующим образом.

Для пропитки инертного носителя используют смесь органических растворов (в частности, экстрактов) соединений европия и/или церия с органическими растворами (в частности, экстрактами) соединений платины и/или палладия и висмута, взятыми в соотношении, обеспечивающем содержание в твердой активной фазе катализатора оксидов европия и/или церия 96-98 мас.%, платины и/или оксида палладия 0,5-2 мас.%

и оксида висмута 1,5-2 мас.%.

Для получения экстрактов европия или церия в качестве исходных водных растворов используют хлоридные растворы, содержащие 0,0066-0,008 моль/л Eu3+ или Ce4+, рН водных фаз европия и церия, равный 7-8, поддерживают добавлением 1,1 моль/л раствора аммиака. Экстракцию европия осуществляют известным способом, например смесью 0,4 моль/л хлорида триалкилбензиламмония (ТАБАХ) и 4,85 моль/л ацетилацетона в бензоле или смесью 4,85 моль/л ацетилацетона и 0,16 моль/л дипиридила в бензоле. Экстракцию церия осуществляют смесью капроновой кислоты (0,16 моль/л) и ацетилацетона (0,974 моль/л) в бензоле. Для максимального насыщения экстрактов водные растворы европия и церия трижды контактируют с одной и той же органической фазой при соотношении объемов фаз 1:1. В результате в обоих случаях получают органическую фазу с концентрацией европия или церия 0,0066-0,008 моль/л.

Для получения насыщенных платиной или палладием экстрактов использовали трехкратную экстракцию платины или палладия 0,23 моль/л раствором триоктиламина в бензоле из водных хлоридных растворов, содержащих 0,0026-0,005 моль/л платины или палладия (в хлористоводородной кислоте 0,4 моль/л HCl), при соотношении объемов фаз 1:1. В результате получают органическую фазу с концентрацией благородного металла (БМ) 0,0026-0,005 моль/л.

Для получения экстрактов висмута раствор триоктиламина (0,23 моль/л) в бензоле насыщался 2 раза водным раствором, содержащим 0,004-0,006 моль/л Bi(NO3)3 в 2 моль/л HNO3 при соотношении объемов фаз 1:1. После разделения фаз концентрация висмута в органической фазе составляет 0,004-0,006 моль/л.

После разделения органических и водных фаз экстракты, содержащие соединения РЗМ, БМ и висмута, смешивают друг с другом в объемном соотношении соответственно 100:(1-4):2. В качестве подложки для получения нанокомпозита используют инертный носитель, например высокодисперсный аморфный диоксид кремния или пористый оксид алюминия. Пропитку образцов аморфного инертного носителя проводят смесью экстрактов соединений РМЗ, БМ и висмута в одну стадию в течение 0,5-1 часа, после чего пропитанные образцы отделяют от экстракта и нагревают при температуре 70-100°С для отгонки растворителя. Затем образцы прокаливают при температуре 820-870°С. Проведение высокотемпературной обработки промежуточного продукта в указанном интервале температур обусловлено тем, что в этих условиях обеспечивается полное сгорание органического вещества, полнота кристаллизации целевого продукта и плавление оксида висмута, что способствует более прочному закреплению частиц металлов и оксидов металлов на инертном носителе, в связи с чем повышение температуры выше 870°С нецелесообразно.

Экспериментально установлено, что время термообработки остатка, полученного после отгонки растворителя, составляет 1-2 часа.

Опытным путем установлено, что выбранные концентрации металлов в исходных водных растворах обеспечивают максимальное извлечение металлов в органическую фазу. Концентрация металлов ниже заявленного интервала приводит к снижению концентрации металлов в органической фазе, что снижает эффективность использования экстрагентов. Повышение концентрации металлов выше заявленного интервала приводит к резкому снижению их коэффициентов распределения, что, в частности, приводит к потерям металлов с рафинатом и изменению молярного соотношения металлов в органической фазе. Кроме того, при концентрации металлов ниже заявленного интервала повышается температура полной конверсии СО/CO2, а при концентрации выше заявленного предела температура полной конверсии практически не меняется, но при этом возрастает расход БМ.

По данным рентгенофазового анализа прокаленные образцы катализатора, который может быть использован для очистки выхлопных газов ДВС, представляют собой нанокомпозиты, например, состава Pt/Eu2O3/Bi2O3/Al2O3, PdO/Eu2O3/Bi2O3/SiO2, PdO/CeO2/Bi2O3/SiO2, Pt/CeO2/Bi2O3/SiO2. По данным, полученным на атомно-силовом микроскопе, размер частиц платины, оксидов палладия и РЗМ находится в интервале 20-40 нм.

Опытным путем показано, что выход целевого продукта в предлагаемом способе составляет около 95%.

Исследование полученных образцов нанокомпозитов показало, что полная конверсия СО/CO2 достигается при 270-290°С.

Техническим результатом предлагаемого изобретения в сравнении с известным способом является упрочнение сцепления активного слоя с поверхностью инертного носителя за счет введения оксида висмута в качестве флюса, что повышает эффективность и длительность работы катализатора.

Возможность осуществления изобретения подтверждается следующими примерами.

Пример 1. Органические экстракты европия (0,0066 моль/л), платины (0,0026 моль/л) и висмута (0,0048 моль/л) смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют гранулированный оксид алюминия (ТУ 2163-015-44912618-2003), который пропитывают смешанным экстрактом в течение 30 мин, после чего образец отделяют от экстракта, нагревают при температуре 100°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. Для полученного образца температура полной конверсии СО/CO2 в первом цикле составляет 280°С при содержании в активном слое 97% оксида европия, 1% платины и 2% оксида висмута.

В последующих циклах испытания образца, полученного согласно примеру 1, осыпания активного слоя с оксида алюминия не наблюдается и температура конверсии не меняется.

Пример 2. Образец оксида алюминия (ТУ 2163-015-44912618-2003) пропитывают смешанным экстрактом, полученным согласно примеру 1, в течение 40 мин, отделяют от экстракта, нагревают для отгонки растворителя при температуре 90°С и прокаливают при температуре 820°С в течение 1 часа. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 280°С при содержании в активном слое 97% оксида европия, 1% платины и 2% оксида висмута. В последующих циклах испытания образца осыпания активного слоя с оксида алюминия не наблюдается и температура конверсии не меняется.

Пример 3. Органические экстракты церия (0,0071 моль/л), платины (0,0026 моль/л) и висмута (0,0048 моль/л) смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют аморфный диоксид кремния, который пропитывают смешанным экстрактом в течение 50 мин, отделяют от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 270°С при содержании в активном слое 97,4% оксида церия, 0,8% платины и 1,8% оксида висмута. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 4. Органические экстракты церия 0,0071 моль/л, палладия 0,0047 моль/л и висмута 0,0048 моль/л смешивают друг с другом в объемном соотношении соответственно 100:2:2. В качестве инертного носителя используют аморфный диоксид кремния, который пропитывают смешанным экстрактом в течение 40 мин, отделяют от экстракта, нагревают при температуре 70°С для отгонки растворителя и прокаливают при температуре 840°С в течение 2 часов. После прокаливания в активном слое содержалось 97,4% оксида церия, 0,8% оксида палладия и 1,8% оксида висмута. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 285°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 5. Органические экстракты церия (0,0071 моль/л), платины (0,0026 моль/л), палладия (0,0047 моль/л) и висмута (0,0048 моль/л) смешивают в объемном соотношении соответственно 100:2:1:2 и пропитывают образец гранулированного оксида алюминия (ТУ 2163-015-44912618-2003) в течение 40 мин, отделяют образец от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 870°С в течение 2 часов. После прокаливания в активном слое содержалось 96% оксида церия, 1% оксида палладия, 1% платины и 2% оксида висмута. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний составляет 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 6. Органические экстракты европия (0,0066 моль/л), церия 0,0071 моль/л, платины 0,0026 моль/л и висмута (0,0048 моль/л) смешивают в объемном соотношении соответственно 50:50:2:2 и пропитывают образец аморфного диоксида кремния в течение 50 мин, затем образец отделяют от экстракта, нагревают при температуре 80°С для отгонки растворителя и прокаливают при температуре 850°С в течение 2 часов. После прокаливания в активном слое содержалось 48,7% оксида церия, 2% оксида висмута, 48,3% оксида европия и 1% платины. Для полученного образца температура полной конверсии СО/CO2 в первом цикле испытаний 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 7. Органические экстракты европия (0,0066 моль/л), церия 0,0071 моль/л, платины 0,0026 моль/л и висмута (0,0048 моль/л) смешивают в объемном соотношении 50:50:2:2 (как в примере 6), пропитывают образец оксида алюминия в течение 1 часа, отделяют образец от экстракта, нагревают при температуре 90°С для отгонки растворителя и прокаливают при температуре 750°С в течение 2 часов. После прокаливания в активном слое содержалось 48,7% оксида церия, 2% оксида висмута, 48,3% оксида европия и 1% платины. Для полученного образца температура полной конверсии CO/CO2 в первом цикле 280°С, а уже при повторном использовании из-за осыпания активного слоя не достигается даже при температуре 400°С.

Пример 8. Органические экстракты, содержащие 0,0066 моль/л европия, 0,0071 моль/л церия, 0,0026 моль/л платины, 0,0047 моль/л палладия и 0,0048 моль/л висмута, смешивают в объемном соотношении соответственно 50:50:2:2:2, пропитывают образец оксида алюминия в течение 1 часа с последующими отгонкой растворителя при температуре 100°С и прокаливанием при температуре 860°С в течение 2 часов. После прокаливания в активном слое содержалось 48% оксида европия, 48,5% оксида церия, 0,85% оксида палладия, 0,85% платины, 1,8% оксида висмута. Для полученного образца температура полной конверсии СО/СО2 в первом цикле испытаний составляет 290°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Пример 9. Органические экстракты, содержащие 0,0066 моль/л европия, 0,0026 моль/л платины, 0,0047 моль/л палладия и 0,0048 моль/л висмута смешивают в объемном соотношении 100:2:1:2 и пропитывают образец оксида алюминия в течение 45 мин с последующими отгонкой растворителя при температуре 70°С и прокаливанием при температуре 830°С в течение 2 часов. После прокаливания в активном слое содержалось 96% оксида европия, 1% платины, 1% оксида палладия и 2% оксида висмута. Для полученного образца температура полной конверсии СО/СО2 в первом цикле испытаний составляет 280°С. В последующих циклах испытания образца осыпания активного слоя с инертного носителя не наблюдается и температура конверсии не меняется.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 125.
20.07.2015
№216.013.6327

Додекагидро-клозо-додекаборат полиэтиленимина и способ его получения

Изобретение относится к химии полиэдрических боргидридных соединений и полиэтиленимина. Способ получения додекагидро-клозо-додекабората полиэтиленимина состава CHNH×0,4HBH включает взаимодействие водных растворов полиэтиленимина (ПЭИ) и додекагидро-клозо-додекаборной кислоты (HBH), взятых в...
Тип: Изобретение
Номер охранного документа: 0002556930
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65c6

Способ получения алюмосиликатов натрия или калия из кремнийсодержащего растительного сырья

Изобретение может быть использовано для получения носителей катализаторов, ионообменных материалов, сорбентов, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления пигментов, для получения пищевых добавок. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002557607
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65c7

Способ утилизации отработанных электролитов хромирования

Изобретение может быть использовано в производствах, где отработанные концентрированные растворы и сточные воды требуют очистки от соединений шестивалентного хрома, например при переработке токсичных отходов гальванического производства - отработанных электролитов хромирования. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002557608
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.7365

Способ переработки политетрафторэтилена

Изобретение относится к области переработки политетрафторэтилена (ПТФЭ) и утилизации его отходов и может найти применение для получения растворов, содержащих ионы фтора (электролитов) и используемых для проведения электролиза и химических реакций в растворах с участием ионов фтора с выделением...
Тип: Изобретение
Номер охранного документа: 0002561111
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.78ab

Аддукты додекагидро-клозо-додекабората хитозана с солями-окислителями переходных металлов и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и...
Тип: Изобретение
Номер охранного документа: 0002562480
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8d49

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Способ...
Тип: Изобретение
Номер охранного документа: 0002567776
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9309

Способ получения защитных полимерсодержащих покрытий на металлах и сплавах

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в...
Тип: Изобретение
Номер охранного документа: 0002569259
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a32

Способ получения каталитически активных композитных слоев на сплаве алюминия

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002571099
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f4a

Способ переработки вольфрамовых концентратов

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO и вольфрамитовых (Fe, Mn) WOконцентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании...
Тип: Изобретение
Номер охранного документа: 0002572415
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
Показаны записи 21-30 из 47.
25.08.2017
№217.015.c136

Способ получения тонких слоев силиката висмута

Изобретение относится к технологии изготовления тонких слоев силиката висмута, которые обладают высокой диэлектрической постоянной и могут найти применение для создания диэлектрических слоев на токопроводящих поверхностях, используемых в качестве фоторефрактивного материала в устройствах записи...
Тип: Изобретение
Номер охранного документа: 0002617580
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c3e7

Способ получения люминофора фосфата лантана, активированного церием и тербием

Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных покрытий для ламп низкого давления. Сначала смешивают органические экстракты лантана, церия и тербия из азотнокислых растворов в мольном соотношении 0,8:0,15:0,05, соответственно, и в...
Тип: Изобретение
Номер охранного документа: 0002617348
Дата охранного документа: 24.04.2017
26.08.2017
№217.015.e943

Способ получения катализатора для очистки выхлопных газов

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания. Способ получения катализатора состава...
Тип: Изобретение
Номер охранного документа: 0002627763
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f795

Способ получения магнитоактивного рентгеноконтрастного средства

Изобретение относится к фармацевтической промышленности, а именно к способу получения магнитоактивного рентгеноконтрастного средства в виде водной дисперсии наночастиц, содержащих оксид железа FeO и оксид тантала ТаО, путем последовательного осаждения из соответствующих растворов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002639567
Дата охранного документа: 21.12.2017
13.02.2018
№218.016.1fe9

Способ получения каталитически активного композитного материала

Изобретение относится к способам получения оксидных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях окисления СО в СO, имеющих место в высокотемпературных процессах очистки технологических и выхлопных газов, в частности в энергетике и автомобильной...
Тип: Изобретение
Номер охранного документа: 0002641290
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2c2b

Резорбируемый рентгеноконтрастный кальций-фосфатный цемент для костной пластики

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала TaO, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002643337
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.4917

Способ получения фосфатного люминофора синего цвета свечения

Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных ламп, светоизлучающих диодов, плазменных дисплейных панелей, электронно-лучевых трубок и медицинских приборов для лечения онкозаболеваний методом фотодинамической терапии. Сначала к...
Тип: Изобретение
Номер охранного документа: 0002651028
Дата охранного документа: 18.04.2018
11.03.2019
№219.016.dc1c

Способ получения наноразмерных порошков гидроксиапатита

Изобретение может быть использовано в технологии сорбентов и медицинских материалов. Наноразмерные порошки гидроксиапатита получают взаимодействием органического производного кальция с органическим производным фосфора в органическом полярном растворителе при атомном отношении кальция к фосфору...
Тип: Изобретение
Номер охранного документа: 0002457174
Дата охранного документа: 27.07.2012
10.04.2019
№219.017.043b

Способ получения тонких слоев пирофосфата циркония

Изобретение может быть использовано при получении катализаторов, носителей катализаторов, сорбентов. Подложку из титана либо его сплава подвергают плазменно-электрохимической обработке в гальваностатическом режиме однополярным постоянным или импульсным током при эффективной плотности 5-15 А/дм...
Тип: Изобретение
Номер охранного документа: 0002371390
Дата охранного документа: 27.10.2009
10.04.2019
№219.017.07db

Способ получения нанодисперсных манганитов редкоземельных металлов

Изобретение может быть использовано в производстве магниторезисторов, материалов для создания головок магнитной записи, катализаторов. Приготавливают водный раствор соли марганца и соли редкоземельного металла. Из полученного раствора экстрагируют соединения марганца бензольным раствором,...
Тип: Изобретение
Номер охранного документа: 0002402489
Дата охранного документа: 27.10.2010
+ добавить свой РИД