10.07.2019
219.017.b07d

АЭРОДИНАМИЧЕСКАЯ ТРУБА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления, поршни которых выполнены ступенчатыми и установлены с возможностью перемещения навстречу друг другу, систему гидравлической синхронизации движения поршней, ресивер и расположенный перпендикулярно к форкамере газодинамический тракт. При этом надпоршневое пространство первого мультипликатора соединено с источником толкающего газа через быстродействующий клапан, а его подпоршневое пространство заполнено демпфирующей жидкостью и связано гидравлическим каналом с надпоршневым пространством второго мультипликатора, при этом для обеспечения синхронизации их движения большие ступени поршней мультипликаторов выполнены разновеликими, так что второй мультипликатор имеет диаметр большой ступени поршня меньше диаметра большой ступени поршня первого мультипликатора. Технический результат заключается в расширении функциональных возможностей аэродинамической трубы кратковременного действия. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях.

Для получения рабочего газа с предельно высокими параметрами торможения потока используются различные аэродинамические установки кратковременного действия - импульсные аэродинамические трубы [1], где нагрев газа в форкамере осуществляется электрической дугой при постоянной плотности, аэродинамические трубы с адиабатическим сжатием рабочего газа, которые разделяются на установки с тяжелым поршнем [2] и с мультипликаторами давления [3]. В них повышение давления и нагрев рабочего газа осуществляются адиабатическим сжатием за счет кинетической энергии поршня либо мультипликатором давления.

Все перечисленные установки характеризуются высоким уровнем технической сложности, эксплуатационной опасности в связи с возможными сбоями в управлении технологическими процессами, поскольку после запуска установки участие человека в дальнейших операциях исключается. В качестве примеров можно рассмотреть некоторые недостатки, характерные для таких труб.

Для импульсной трубы [1] отсутствие электродугового разряда при прохождении команды "пуск" приведет к запуску дифференциального мультипликатора и росту давления в форкамере из-за перемещения мультипликатора, разрыву диафрагмы и, соответственно, к самопроизвольному пробою между электродами на этапе истечения рабочего газа через критическое сечение. В результате форкамера с мультипликатором давления выйдут из строя.

В адиабатической трубе с тяжелым поршнем [2] предусматривается использование помимо воздуха в качестве рабочего газа, реакции разложения закиси азота в смеси с азотом (N2O+N2), которая после разложения образует газ, эквивалентный воздуху, но с более высокой начальной температурой. Из опыта эксплуатации гиперзвуковой импульсной трубы ИТПМ СО РАН ИТ-302М с применением аналогичной смеси газов известно, что в каналах большого удлинения, аналогичных каналу адиабатической трубы с поршнем, подогретая электрической дугой закись азота детонирует даже в смеси с воздухом. Это серьезное ограничение на использование закиси азота N2O в адиабатических установках с тяжелым поршнем. Кроме того, отсутствие системы стабилизации параметров рабочего газа при истечении через сопло ухудшает точность исследований.

Наиболее близким из известных решений к заявленному техническому решению является аэродинамическая труба [3].

Аэродинамическая труба [3] оснащена двумя оппозитно расположенными мультипликаторами давления. В этой конструкции применяется одноступенчатое адиабатическое сжатие рабочего газа. Отличительной особенностью данной схемы является система гидравлической синхронизации движения поршней, выполненная в виде сдвоенного мультипликатора с двумя ступенчатыми поршнями, установленными с возможностью перемещения в противоположные стороны и образующими полости с общей камерой между ними, причем полости, образованные ступеньками каждого из поршней сдвоенного мультипликатора, выполнены с равными поперечными сечениями и одна полость соединена трубопроводом с левым мультипликатором, а другая - с правым.

Недостатком данной схемы является сложность и практическая нереализуемость принятой схемы синхронизации, что показал практический опыт эксплуатации аэродинамической трубы AT-303, установленной в ИТПМ СО РАН.

Задачей предлагаемого технического решения является расширение экспериментальных возможностей аэродинамической трубы кратковременного действия путем увеличения диапазона реализуемых параметров торможения потока за счет использования простой системы синхронизации движения поршней, обеспечивающей надежную стабилизацию параметров потока в течение рабочего режима независимо от способа подогрева рабочего газа.

Использование изобретения позволяет увеличить температуру торможения рабочего газа в форкамере и, соответственно, расширить область моделируемых параметров торможения. Кроме этих качеств, появится возможность сравнивать результаты исследований, полученные в одной установке при различных способах создания рабочего газа и при фиксированной геометрии газодинамического тракта трубы.

Технический результат достигается тем, что аэродинамическая труба, содержащая установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления, поршни которых выполнены ступенчатыми и установлены с возможностью перемещения навстречу друг другу, систему гидравлической синхронизации движения поршней, ресивер и расположенный перпендикулярно к форкамере газодинамический тракт, согласно изобретению надпоршневое пространство первого мультипликатора соединено с ресивером через быстродействующий клапан, а его подпоршневое пространство заполнено демпфирующей жидкостью и связано гидравлическим каналом с надпоршневым пространством второго мультипликатора, при этом для обеспечения синхронизации их движения большие ступени поршней мультипликаторов выполнены разновеликими, так что второй мультипликатор имеет диаметр большой ступени поршня меньше диаметра большой ступени поршня первого мультипликатора

Перечисленные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, техническое решение является новым.

На чертеже показана схема аэродинамической трубы со стабилизацией параметров потока.

Труба содержит ресивер 1, быстродействующий пневмоклапан 2, изолирующий толкающий газ из ресивера от надпоршневого пространства 3 поршня 4 дифференциального мультипликатора давления 5. Второй дифференциальный мультипликатор давления 6 содержит поршень 7, оба поршня 4 и 7 расположены оппозитно друг другу, могут синхронно перемещаться навстречу друг другу и имеют лабиринтные уплотнения (на чертеже не показано). Надпоршневое пространство 3 поршня 4 имеет пневмотрассу с вентилем для сброса давления (без позиции на чертеже), пневмотрассу 9 с вентилем для заполнения надпоршневого пространства 3 избыточным давлением. Подпоршневое пространство 8 соединено с надпоршневым пространством 10 поршня 7 гидроканалом 11, содержащим устройство 12 для изменения расхода протекающей по гидроканалу жидкости и обратный клапан 13 для удаления пузырьков газа из гидроканала. Перпендикулярно оси дифференциальных мультипликаторов и форкамере 14 расположен газодинамический тракт. Перед газодинамическим трактом установлены диафрагма 15 и устройство управляемого вскрытия диафрагмой, которое применяется при проведении экспериментов с использованием химической энергии (на чертеже не показано).

Управляемое вскрытие диафрагмы 15 необходимо при использовании химических источников энергии для нагрева рабочего газа с тем, чтобы реакция в форкамере завершилась полностью и только после окончания реакции произошло вскрытие диафрагмы при поступлении электрического сигнала с электронного блока управления. Обычно это время изменяется от нескольких миллисекунд до десятков миллисекунд.

При экспериментах, где не применяют химические источники энергии, используют диафрагму, разрушающуюся под воздействием давления рабочего газа.

Газодинамический тракт содержит дросселирующую камеру 16 и сопло 17. Форкамера содержит коаксиальные электроды 18, подводящие к ней электрическую энергию от конденсаторной батареи 19, два пневмоканала 20, 21 и пневмотрассу 22 с вентилем для заполнения форкамеры сжатым воздухом. Пневмоканал 20 с вентилями предназначен для подсоединения системы 23 заправки форкамеры реагирующими газами (N2O, С3Н8, Н2, O2), азотом и воздухом. Пневмоканал 21 предназначен для подключения импульсного адиабатического генератора рабочего газа 24. Подпоршневое пространство 25 поршня 7 частично заполнено жидкостью, которая участвует в торможении поршня на конечном участке движения. Здесь же расположены дренированная емкость 26 с крышкой, пневмотрасса 27 с вентилем для сброса давления из подпоршневого пространства 25 и подсоединена пневмотрасса 28 с вентилем и манометром для подачи избыточного давления для возвращения поршней 4, 7 мультипликаторов 5 и 6 в исходные крайние положения.

Предложенная система синхронизации движения поршней обеспечивает надежную стабилизацию параметров потока в течение всего рабочего режима независимо от способа подогрева рабочего газа.

В связи с возможностью использования в предлагаемой аэродинамической трубе многовариантных рабочих режимов рассмотрим наиболее важные из них.

На режимах с адиабатическим сжатием:

1 - адиабатический нагрев воздуха;

2 - дуга+химическая энергия+адиабатический нагрев, например: дуга+воздух+N2O+N2 (85% N2O+15% N2)+H2+O2 или дуга+Н22+воздух; возможно использование других горючих газов, например пропана С3Н8.

На режимах без адиабатического сжатия:

3 - электрическая дуга+воздух;

4 - дуга+воздух+химическая энергия, например: дуга+воздух+N2O+N2.

Пример 1

Работа аэродинамической трубы в режиме адиабатического нагрева рабочего газа

Подготовка трубы к пуску предусматривает выполнение следующих операций.

Перед экспериментом газодинамический тракт трубы, включая дросселирующую камеру 16, сопло 17, рабочую часть и выхлопную вакуумную емкость (на чертеже не показаны) изолируют от форкамеры диафрагмой 15 без устройства управляемого вскрытия, так как отсутствует химический подогрев, и откачивают вакуумными насосами до давления ~ 10-2 мм рт.ст.

Быстродействующий пневмоклапан 2 закрывается и ресивер 1 заполняется сжатым воздухом до рабочего давления.

Крышку на емкости 26 закрывают, вентиль пневмотрассы 28 открывают и в подпоршневое пространство 25 поршня 7 подается избыточное давление. При этом поршни 4, 7 расходятся в крайние положения. Обратный клапан 13 под действием избыточного давления жидкости в гидроканале 11 закрывается. После возвращения поршней 4, 7 в исходное положение производится сброс давления из полости 25, вентили 9, 27, 28, 22 закрывают. К пневмоканалу 21 подсоединяют импульсный адиабатический генератор 24. Крышку на емкости 26 открывают. Система заправки форкамеры реагирующими газами 23 отключена и не имеет механической связи с форкамерой. Вентиль пневмоканала 20 закрыт.

Аэродинамическая труба готова к пуску.

При запуске трубы включается в работу импульсный адиабатический генератор 24, и полость форкамеры 14 через пневмоканал 21 заполняется рабочим газом при давлении ~ 200 кГ/см2 и температуре ~ (1400-1500) К. После заполнения форкамеры рабочим газом открывается быстродействующий клапан 2.

При этом толкающий газ из ресивера 1 поступает в надпоршневое пространство 3 поршня 4 мультипликатора давления 5. Под воздействием давления толкающего газа поршень 4 начинает перемещаться в сторону форкамеры, выталкивая жидкость из подпоршневого пространства 8 по гидроканалу 11 в надпоршневое пространство 10 поршня 7 мультипликатора 6. Под воздействием давлений газа и жидкости, действующих на поршни 4 и 7, последние синхронно сходятся к центру форкамеры, сжимая рабочий газ и повышая его температуру. При росте давления в форкамере 14 диафрагма 15 вскрывается и рабочий газ с постоянным расходом вытесняется из форкамеры в газодинамический тракт, т.е. в дросселирующую камеру 16 и в сопло 17. Величина постоянной скорости поршней 4, 7 выбирается исходя из расхода рабочего газа и задается расходом жидкости через гидравлический канал 11 устройством для изменения расхода 12 перед пуском, при этом диаметры больших ступеней поршней 4, 7 разновелики - диаметр поршня 7 меньше. Такой вариант обеспечивает одинаковый ход и скорость поршней при сжатии рабочего газа.

На заключительном этапе вытеснения рабочего газа из форкамеры торможение поршней 4, 7 мультипликатора осуществляется лабиринтными уплотнениями, находящимися на больших ступенях поршней и на торцевых стенках мультипликаторов 5 и 6.

Пример 2

Работа аэродинамической трубы в режиме дуга+химическая энергия+адиабатический нагрев (дуга+воздух+N2O+N3 (85% N2O+15% N2)+H2+O2)

Такие режимы работы актуальны тем, что загрязнение рабочего газа продуктами эрозии электродов сведено к минимуму за счет небольшой энергии электродугового разряда, используемой для поджига смеси.

Поскольку подготовка установки к пуску представлена в предыдущем разделе, здесь будет дано описание только тех изменений технологического процесса подготовки, которые необходимы для реализации данного режима.

В этом примере работы трубы используется химическая энергия. Поэтому форкамера изолируется от газодинамического тракта трубы диафрагмой 15 и устройством управляемого вскрытия диафрагмы. От пневмоканала 21 отсоединяют импульсный адиабатический генератор 24 (если он был подсоединен) и пневмоканал 21 закрывают.

К форкамере через пневмоканал 20 присоединяют систему заправки 23 для заполнения полости форкамеры смесью заранее определенных типов газов, включая заправку воздухом через пневмотрассу 22. После заполнения форкамеры смесью газов пневмоканал 20 закрывают и система 23 отводится от форкамеры, разрывая механическую связь с корпусом. Конденсаторная батарея заряжается до необходимого напряжения.

При запуске трубы происходит разряд конденсаторной батареи в форкамере с выделением тепловой энергии. Время горения дуги ~ 1 мс. В процессе горения дуги водород (пропан С3Н8) воспламеняется, вступая в реакцию с кислородом, давление и температура смеси повышаются. При достижении температуры (800-1200) К начинается реакция разложения закиси азота с выделением тепла. Продолжительность реакции составляет от нескольких миллисекунд до нескольких десятков миллисекунд, в зависимости от процентного содержания закиси азота в смеси. При достижении давления в форкамере, близком к максимальному, по сигналу открывается пневмоклапан 2 и включаются в работу поршни 4, 7 мультипликаторов давления 5 и 6, которые начинают адиабатически сжимать рабочий газ в форкамере с постоянной скоростью.

Через промежуток времени с момента разряда конденсаторной батареи, включающий время реакции химических компонент (3-40) мс и (30-50)% времени движения поршней 4, 7 дифференциальных мультипликаторов, подается сигнал на устройство управляемого вскрытия диафрагмы 15. Диафрагма вскрывается, и рабочий газ с постоянным расходом вытесняется либо в дросселирующую камеру 16 с соплом 17, либо прямо в сопло 17 при эксперименте со скоростями М=8-20.

Пример 3.

Работа аэродинамической трубы в режиме дуга+воздух

При подготовке трубы к работе в обычном классическом режиме (нагрев рабочего газа осуществляется только дугой) поршни 4, 7 мультипликаторов 5 и 6 давления сдвигаются к центру форкамеры подачей небольшого давления через пневмотрассу 9 в надпоршневое пространство 3. При этом формируется объем форкамеры, соответствующий возможностям конденсаторной батареи по энергии. После выбора объема поршень 4 фиксируется в этом положении от возможности смещения влево. Фиксация может быть проведена установкой кольцевой вставки в надпоршневое пространство 3, возможны другие варианты. Перемещение поршня 7 вправо ограничено жидкостью в надпоршневом пространстве 10. Форкамера изолируется от газодинамического тракта трубы диафрагмой 15 без устройства управления вскрытием (отсутствуют химические реакции).

Вентилем трассы 22 проводится заполнение полости форкамеры 14 сжатым воздухом. Конденсаторная батарея 23 заряжается до необходимого напряжения.

При запуске трубы происходит разряд конденсаторной батареи 19. Давление и температура газа в течение ~ 1 мс резко увеличиваются. Диафрагма 15 под воздействием давления вскрывается. Вскрытие обычно происходит в течение горения дуги, однако это практически не влияет на величину ожидаемых параметров торможения. Одновременно открывается быстродействующий клапан 2, и происходит запуск системы стабилизации параметров потока в форкамере трубы (встречное движение поршней 4, 7 дифференциальных мультипликаторов 5 и 6). Зная величину ожидаемого давления в полости форкамеры и задавая заранее величины давления толкающего газа и расхода жидкости устройством 12 через гидравлический канал 11, получаем стабилизированное по давлению и температуре истечение газа из форкамеры в газодинамический тракт.

Пример 4

Работа аэродинамической трубы в режиме дуга+воздух+химическая энергия

Перед подготовкой трубы к пуску все системы приводятся в предстартовое состояние (объем форкамеры 14 ограничен вставкой в надпоршневом пространстве 3). Форкамера изолируется от газодинамического тракта диафрагмой и устройством управляемого вскрытия.

Система заправки реагирующими газами 23, состоящая из электромагнитных клапанов, через пневмоканал 19 механически соединяется с полостью форкамеры. Форкамера 14 поочередно заполняется смесью газов, например закисью азота N2O и N2, в соотношении 85% N2O, 15% N2. Аналогично может использоваться химическая энергия других компонент (Н2, C3H8,). Далее происходит заполнение воздухом с помощью вентиля пневмотрассы 22. После заполнения вентили 20, 22 закрывают и система заправки 23 отводится от форкамеры, разрывая механическую связь с корпусом.

Производится зарядка конденсаторной батареи 19.

При запуске установки происходит разряд батареи 19, температура и давление газа увеличиваются. При достижении температуры (1200-1500) К начинается реакция разложения закиси азота с выделением тепла. В результате разложения в сочетании с 15% азота образуется газ, эквивалентный нагретому воздуху. Продолжительность реакции разложения составляет от нескольких миллисекунд до нескольких десятков миллисекунд в зависимости от процентного содержания закиси азота в смеси и сопровождается ростом температуры и давления в форкамере. Одновременно с разрядом батареи открывается пневмоклапан 2 и толкающий газ из ресивера 1 поступает в надпоршневое пространство 3 мультипликатора давления 5. Происходит сжатие газа в форкамере.

При достижении давления в форкамере, близком к максимальному при разложении закиси азота (время реакции конкретной смеси устанавливается заранее в исследованиях), подается сигнал на вскрытие диафрагмы 15. Диафрагма вскрывается, и рабочий газ с постоянным расходом вытесняется из форкамеры в газодинамический тракт.

Источники информации

1. Патент США №3418445, кл.73-147, 1968.

2. Патент РФ №2093716, МПК F15D 1/00, F15B 19/00, G01M 9/00.

3. Патент РФ №(11)2166186, МПК G01M 9/02 - прототип.

Аэродинамическая труба, содержащая установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления, поршни которых выполнены ступенчатыми и установлены с возможностью перемещения навстречу друг другу, систему гидравлической синхронизации движения поршней, ресивер и расположенный перпендикулярно к форкамере газодинамический тракт, отличающаяся тем, что надпоршневое пространство первого мультипликатора соединено с ресивером через быстродействующий клапан, а его подпоршневое пространство заполнено демпфирующей жидкостью и связано гидравлическим каналом с надпоршневым пространством второго мультипликатора, при этом для обеспечения синхронизации их движения большие ступени поршней мультипликаторов выполнены разновеликими, так что второй мультипликатор имеет диаметр большой ступени поршня меньше диаметра большой ступени поршня первого мультипликатора.
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
18.05.2019
№219.017.592a

Способ управления аэродинамическими характеристиками несущей поверхности и несущая поверхность

Группа изобретений относится к области аэродинамики. Несущая поверхность содержит изменяемый герметичный отсек с клапанами для подачи или отсоса воздуха. Поверхность выполнена из эластичной оболочки, закрепленной на жестком каркасе с возможностью изменения конфигурации. На участках, не...
Тип: Изобретение
Номер охранного документа: 0002412864
Дата охранного документа: 27.02.2011
18.05.2019
№219.017.5a4b

Способ сварки материалов

Изобретение относится к способу сварки материалов высокоэнергетическими источниками излучения, например лазерным, плазменным или электроннолучевым, и может быть использован для сварки изделий из тонколистовых и разнородных материалов различного назначения в химической, электронной и...
Тип: Изобретение
Номер охранного документа: 0002404887
Дата охранного документа: 27.11.2010
18.05.2019
№219.017.5af3

Сверхзвуковой прямоточный воздушно-реактивный двигатель с пульсирующим режимом горения (спврд с прг) и способ его работы

Способ работы сверхзвукового прямоточного воздушно-реактивного двигателя с пульсирующим режимом горения заключается в том, что топливо для запуска двигателя подают в первый пояс участка постоянного сечения камеры сгорания и инициируют пульсирующий режим горения с периодическим формированием...
Тип: Изобретение
Номер охранного документа: 0002446305
Дата охранного документа: 27.03.2012
10.07.2019
№219.017.b084

Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень,...
Тип: Изобретение
Номер охранного документа: 0002439523
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b107

Электродуговой плазмотрон с паровихревой стабилизацией дуги

Изобретение относится к электродуговым плазмотронам, работающим на водяном паре, и может быть эффективно использовано в плазмохимии, металлургии, при разрушении горных пород, резке металлов и напылении жаростойких покрытий. Технический результат - упрощение конструкции, увеличение надежности,...
Тип: Изобретение
Номер охранного документа: 0002441353
Дата охранного документа: 27.01.2012
Показаны записи 1-10 из 22.
10.02.2014
№216.012.9ebd

Способ получения медного покрытия на керамической поверхности газодинамическим напылением

Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия....
Тип: Изобретение
Номер охранного документа: 0002506345
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a5c9

Способ разделения многокомпонентной парогазовой смеси

Способ разделения многокомпонентной парогазовой смеси относится к химической, нефтехимической, газовой промышленности и может быть использован при извлечении или концентрировании одного или нескольких целевых компонентов из многокомпонентной парогазовой смеси, например гелия из природного газа....
Тип: Изобретение
Номер охранного документа: 0002508156
Дата охранного документа: 27.02.2014
10.08.2015
№216.013.6bf3

Способ управления обтеканием сверхзвукового летательного аппарата

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Способ управления обтеканием включает изменение направления воздушного потока со встречного на радиальное истечение относительно ЛА. На набегающий воздушный поток направляют через газопроницаемые...
Тип: Изобретение
Номер охранного документа: 0002559193
Дата охранного документа: 10.08.2015
27.10.2015
№216.013.8aa6

Способ создания рабочего газа в импульсной аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований. Согласно...
Тип: Изобретение
Номер охранного документа: 0002567097
Дата охранного документа: 27.10.2015
20.03.2016
№216.014.c64f

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в лабораторных условиях. Аэродинамическая труба содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления,...
Тип: Изобретение
Номер охранного документа: 0002578052
Дата охранного документа: 20.03.2016
27.04.2016
№216.015.3868

Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с...
Тип: Изобретение
Номер охранного документа: 0002582805
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.51a6

Щелевой инжектор-генератор вихрей и способ его работы

Изобретение относится к энергетике. Щелевой инжектор-генератор вихрей, установленный в канале вдоль направления движения высокоэнергетического газового потока. При этом плоский щелевой канал инжектора выполнен с косым срезом на выходе и установлен таким образом, что срез щели образует острый...
Тип: Изобретение
Номер охранного документа: 0002596077
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6b19

Способ лечения артериальной гипертензии путем ингаляционного введения аэрозоля гипотензивного препарата

Изобретение относится к медицине, в частности к способу лечения артериальной гипертензии у млекопитающих, включая людей, и может быть использовано для экстренного лечения острых гипертонических состояний, например гипертонического криза. Согласно предлагаемому способу осуществляют ингаляционное...
Тип: Изобретение
Номер охранного документа: 0002593016
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.704b

Устройство для очистки запыленных газов

Изобретение относится к технике очистки газов от пыли и твердых частиц и может быть использовано в цементной, химической, металлургической, горнодобывающей, угольной, строительной и других отраслях промышленности. Устройство для очистки запыленных газов содержит корпус в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002596247
Дата охранного документа: 10.09.2016
29.12.2017
№217.015.fdd4

Импульсная аэродинамическая труба с электродуговым или комбинированным подогревом рабочего газа

Импульсная аэродинамическая труба с электродуговым или комбинированным подогревом рабочего газа относится к области экспериментальной аэродинамики. Аэродинамическая труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и двуступенчатый поршень,...
Тип: Изобретение
Номер охранного документа: 0002638087
Дата охранного документа: 11.12.2017

Похожие РИД в системе