×
18.05.2019
219.017.5a4b

СПОСОБ СВАРКИ МАТЕРИАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу сварки материалов высокоэнергетическими источниками излучения, например лазерным, плазменным или электроннолучевым, и может быть использован для сварки изделий из тонколистовых и разнородных материалов различного назначения в химической, электронной и радиотехнической промышленности. Перед сваркой осуществляют предварительное проплавление свариваемой зоны материалов. Сварку ведут с одновременным добавлением в зону плавления модификаторов в виде нанопорошковых материалов, выбранных из числа тугоплавких соединений, например нитридов, карбонитридов, оксидов. Концентрация нанопорошкового материала составляет менее 0,1% по массе сварочной ванны. Нанопорошковые материалы в зону сварки могут быть нанесены в виде суспензии. Способ позволяет осуществлять сварку однородных материалов или разнородных материалов со вставками или без них, а также композиционных материалов со вставками или без них, при этом достигаются повышение качества сварных швов и получение высокопрочных поверхностных слоев. 4 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области сварки материалов высокоэнергетическими источниками излучения, например лазерным, плазменным, или электроннолучевым методом, и может быть использовано для лазерной сварки изделий различного назначения из тонколистовых материалов в химической, электронной и радиотехнической промышленности, а также при производстве труб. Может использоваться для непосредственного соединения двух однородных или разнородных металлов или сплавов между собой.

Техническая задача сварки металлов состоит в повышении качества сварного соединения и увеличении производительности. Для достижения этих результатов используют, например присадочные материалы или промежуточные вставки, обеспечивающие те или иные свойства сварному шву. Успешному решению этой проблемы может способствовать развитие новых технологий, связанных с воздействием, направленным на формирование внутренней структуры материалов и свойств сварных соединений.

Известен способ лазерной сварки металлов с высокой теплопроводностью и высокой отражающей способностью, в котором на поверхность свариваемого металла со стороны лазерного луча наносят предварительно слой присадочного материала с меньшей отражающей способностью и с более высокой температурой плавления /1/.

Основной недостаток способа заключается в нерегламентированных размерах слоя присадочного материала, в результате чего при некоторых режимах сварки его эффективность невелика и может иметь место снижение коэффициента полезного действия (КПД) сварки и появление дефектов в сварном шве.

Известен способ сварки нержавеющей стали (Х15Н5Д2Т) с титановым сплавом ОТ4 с применением промежуточной вставки, в качестве которой используется ванадиевый сплав, легированный вольфрамом /В кн.: Лекции по сварке разнородных разноименных металлов. М.: МДНТП, 1973. С 46-51/.

Недостатком метода является необходимость управлять составом металла шва и применять технику сварки, надежно обеспечивающую получение сварных соединений заданного химического состава, т.к. механические свойства таких соединений определяются соотношением легирующих элементов в металле шва.

Задачей предлагаемого способа сварки материалов является повышение качества сварных швов и высокопрочных поверхностных слоев. При выполнении поставленной задачи должны быть учтены все требования, такие как локальный характер теплового воздействия, минимальная термическая деформация, широкий диапазон регулирования энергетических характеристик луча, обеспечивающих жесткий термический режим с высокими скоростями нагрева и охлаждения.

Перспективным направлением развития высокоэнергетических технологий сварки материалов, например лазерной, является совмещение высокоэнергетического воздействия на свариваемые материалы с насыщением их поверхностного слоя легирующими и модифицирующими добавками и создание упрочненного модифицированного слоя с помощью введения в зону сварки, например, тугоплавких наноразмерных частиц порошка. Такие модифицирующие добавки в металлургии называют нанопорошковые иннокуляторы (НПИ).

Поставленная задача выполняется благодаря тому, что способ сварки материалов высокоэнергетическими источниками излучения, например лазерным, плазменным или электроннолучевым, по которому перед сваркой осуществляют предварительное проплавление свариваемой зоны материалов, а сварку ведут с одновременным добавлением в зону плавления модификаторов в виде нанопорошковых материалов, выбранных из числа тугоплавких соединений, например нитридов, карбонитридов, оксидов, при этом концентрация нанопорошкового материала составляет менее 0,1% по массе сварочной ванны. Нанопорошковые материалы в зону сварки могут быть нанесены в виде суспензии. Способ позволяет осуществлять сварку однородных материалов или разнородных материалов со вставками или без них, а также композиционных материалов со вставками или без них.

Совокупность существенных отличительных признаков не выявлена из существующего уровня техники, позволяет решить поставленную задачу, а также сделать вывод о том, что заявляемое техническое решение соответствует критерию "изобретательский уровень".

На фиг.1 изображена микроструктура сварного шва стали марки Ст 20: а) без добавления нанопорошковых материалов; б) с добавлением нанопорошковых материалов TiN+Y2O3. На фиг.2 - механические характеристики сварного соединения сплава ВТ5 без добавок НПИ и с добавлением НПИ тугоплавких соединений: а) относительное удлинение δ; б) предел прочности σb и в) предел текучести σ0,2.

Способ сварки материалов осуществляется следующим образом.

Рассмотрим способ лазерной сварки. Вначале подготавливают свариваемые поверхности. При подготовке свариваемых пластин удаляют пленку оксидов на ширине 20-25 мм по всей длине соединения травлением в растворе NaOH (50 г на 1 л Н2О) с последующим осветлением в 30% растворе HNO3. После травления детали промывают в горячей воде. Непосредственно перед сваркой соединяемые поверхности зачищают шабером до блеска. Это позволит избежать дефектов при сварке и в первую очередь пористости. В качестве защитной среды при лазерной сварке используют гелий как наиболее эффективный для достижения наибольшего эффекта проплавления либо гелий используют для защиты верхней поверхности сварочной ванны, а нижнюю - защищают аргоном. При этом защита обеих поверхностей при лазерной сварке алюминиевых и титановых сплавов обязательна. Расход гелия не менее 7-8 л/мин, аргона - 5-6 л/мин.

Массовый расход нанопорошкового материала на единицу длины обрабатываемой поверхности составляет Mp=pρdh, кг/м, где р - массовая доля порошка; d - ширина сварочного шва, h - толщина пластин, ρ - плотность жидкого металла.

Пример 1

Рассмотрим сварку материала с параметрами: ρ=7800 кг/м3, d=0,004 м, h=0,0015 м, тогда Mp=p7800·0,004·0,0015=0,0468р. Значение величины р примем аналогично к процессу модифицирования сплавов нанопорошковыми материалами, равным 0,0005. В результате получим mp=0,0468·0,0005=2,34·10-5 кг/м=0,0234 г/м. Поскольку в процессе сварки возможно выгорание нанопорошкового материала, то значение этой величины может быть установлено экспериментально.

Пример 2

Были проведены экспериментальные исследования влияния тугоплавких механоактивированных нанопорошковых материалов на качество сварных соединений, формирующихся при воздействии на металл лазерного излучения. Обработку образцов из сплавов на основе алюминия, титана и железа проводили на непрерывном СО2-лазере в атмосфере гелия. Скорость пермещения луча по обрабатываемой поверхности варьировалась в интервале (2-4) м/мин, мощность излучения - от 2 до 3,5 кВт. Специально подготовленные нанопорошковые материалы и их композиции в виде суспензии наносились на предварительно обработанные поверхности пластин в количестве менее 0,1% по массе сварочной ванны (проплавляемого металла) в расчете на тугоплавкие соединения. В качестве нанопорошковых материалов использовались различные порошковые композиции с наночастицами TiN, Y2O3, TiC, плакированные соответствующим металлом (хромом, никелем, титаном и др.).

На фиг.1 в качестве примера приведены фотографии шлифов сварного соединения стальных пластин, не содержащего нанопорошковые добавки и модифицированного нанопорошковым материалом TiCxNy+Ст3.

Видно, что применение модификатора из нанопорошкового материала изменило как морфологию сварного шва, так и микроструктуру соединения. Размеры кристаллов видманштеттова феррита в сварном шве без модификатора достигают 100÷150 мкм в длину, тогда как в шве с модифицированными добавками не превышают 30÷40 мкм.

Следует отметить, что нанесение нанопорошковых материалов в зону сварки в виде суспензии значительно повышает коэффициент поглощения энергии излучения, что позволяет при той же мощности излучения в 1.5-2 раза увеличить скорость сварки детали.

Пример 3

Был выполнен цикл исследований влияния модификаторов в виде нанопорошковых материалов на качество сварного соединения титанового сплава ВТ5. В качестве нанопорошковых материалов использовались тугоплавкие соединения: нитрид титана (TiN), а также их смесь нитрида титана (TiN) с оксидом иттрия (Y2O3), плакированные хромом. Концентрация модифицирующей композиции, вводимой в сварочную ванну, составляла менее 0,1% по массе. Подготовленная композиция наносилась в виде суспензии на поверхность свариваемых пластин, толщина которых составляла 2 мм; мощность лазерного луча 2,0 кВт, а скорость сварки 2 м/мин. Было установлено, что применение модификаторов позволяет повысить скорость сварки при той же мощности луча за счет увеличения коэффициента поглощения интенсивности лазерного излучения. При этом повысилось качество соединения (морфология и структура шва), существенно возросли его механические характеристики (прочность на разрыв, предел текучести) как при использовании первой, так и второй модифицирующей добавки (см. фиг.2).

Проведенные эксперименты показали положительное воздействие модификаторов в виде нанопорошковых материалов, выбранных из числа тугоплавких соединений, на макро- и микроструктуру металла и его механические свойства в зоне высокоэнергетического воздействия. Существенно увеличивается коэффициент поглощения, что позволяет в полтора-два раза повысить скорость обработки, уменьшилась зона термического влияния, возросли дисперсность кристаллической структуры и плотность сварного шва.

Источники информации

1. Патент RU №2133662, В23К 26/00, 1998 г.

2. Кн.: Лекции по сварке разнородных разноименных металлов. М.: МДНТП, 1973, с.46-51 - прототип.

Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
18.05.2019
№219.017.592a

Способ управления аэродинамическими характеристиками несущей поверхности и несущая поверхность

Группа изобретений относится к области аэродинамики. Несущая поверхность содержит изменяемый герметичный отсек с клапанами для подачи или отсоса воздуха. Поверхность выполнена из эластичной оболочки, закрепленной на жестком каркасе с возможностью изменения конфигурации. На участках, не...
Тип: Изобретение
Номер охранного документа: 0002412864
Дата охранного документа: 27.02.2011
18.05.2019
№219.017.5af3

Сверхзвуковой прямоточный воздушно-реактивный двигатель с пульсирующим режимом горения (спврд с прг) и способ его работы

Способ работы сверхзвукового прямоточного воздушно-реактивного двигателя с пульсирующим режимом горения заключается в том, что топливо для запуска двигателя подают в первый пояс участка постоянного сечения камеры сгорания и инициируют пульсирующий режим горения с периодическим формированием...
Тип: Изобретение
Номер охранного документа: 0002446305
Дата охранного документа: 27.03.2012
10.07.2019
№219.017.b07d

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002436058
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.b084

Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень,...
Тип: Изобретение
Номер охранного документа: 0002439523
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b107

Электродуговой плазмотрон с паровихревой стабилизацией дуги

Изобретение относится к электродуговым плазмотронам, работающим на водяном паре, и может быть эффективно использовано в плазмохимии, металлургии, при разрушении горных пород, резке металлов и напылении жаростойких покрытий. Технический результат - упрощение конструкции, увеличение надежности,...
Тип: Изобретение
Номер охранного документа: 0002441353
Дата охранного документа: 27.01.2012
Показаны записи 1-10 из 19.
10.02.2014
№216.012.9ebd

Способ получения медного покрытия на керамической поверхности газодинамическим напылением

Изобретение относится к способу получения адгезионно-прочных медных покрытий на керамической поверхности с использованием газодинамического напыления. Проводят предварительное напыление подслоя из оксида меди (1) с последующим напылением медного покрытия и термическую обработку покрытия....
Тип: Изобретение
Номер охранного документа: 0002506345
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a5c9

Способ разделения многокомпонентной парогазовой смеси

Способ разделения многокомпонентной парогазовой смеси относится к химической, нефтехимической, газовой промышленности и может быть использован при извлечении или концентрировании одного или нескольких целевых компонентов из многокомпонентной парогазовой смеси, например гелия из природного газа....
Тип: Изобретение
Номер охранного документа: 0002508156
Дата охранного документа: 27.02.2014
27.12.2015
№216.013.9d36

Способ получения керамики

Изобретение относится к способам получения керамических материалов на основе оксида алюминия и может быть использовано в медицине при производстве имплантатов, металлургии, радиотехнике, энергетике и теплотехнике. Технический результат заключается в получении плотного керамического материала,...
Тип: Изобретение
Номер охранного документа: 0002571876
Дата охранного документа: 27.12.2015
13.01.2017
№217.015.6b19

Способ лечения артериальной гипертензии путем ингаляционного введения аэрозоля гипотензивного препарата

Изобретение относится к медицине, в частности к способу лечения артериальной гипертензии у млекопитающих, включая людей, и может быть использовано для экстренного лечения острых гипертонических состояний, например гипертонического криза. Согласно предлагаемому способу осуществляют ингаляционное...
Тип: Изобретение
Номер охранного документа: 0002593016
Дата охранного документа: 27.07.2016
19.01.2018
№218.016.0901

Дисковый насос трения для перекачки жидкостей

Изобретение относится к дисковым насосам трения для перекачки жидкостей, в частности в кардиохирургии для создания вспомогательного насоса поддержки кровообращения для лечения терминальной сердечной недостаточности. Насос содержит корпус, внутри которого установлен с возможностью вращения пакет...
Тип: Изобретение
Номер охранного документа: 0002631854
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.1bcb

Способ выделения растворенных газов из перекачиваемой жидкости и устройство для его реализации (варианты)

Изобретение относится к насосостроению и предназначено для перекачки различных сред, например, для выделения воздуха, растворенного в воде. Выделение растворенных газов из перекачиваемой жидкости методом понижения давления в потоке газа с использованием явления кавитации выполняется благодаря...
Тип: Изобретение
Номер охранного документа: 0002636732
Дата охранного документа: 27.11.2017
13.02.2018
№218.016.29ae

Микросферическая газопроницаемая мембрана и способ ее получения

Изобретение относится к области диффузионно-мембранных технологий, направлено на получение селективных мембран и может быть использовано в газоперерабатывающей, нефтехимической, химической и других отраслях промышленности для извлечения и концентрирования целевых компонентов, например гелия и...
Тип: Изобретение
Номер охранного документа: 0002443463
Дата охранного документа: 27.02.2012
10.05.2018
№218.016.487f

Вставка для сварки разнородных материалов

Изобретение может быть использовано для сварки разнородных материалов. Вставка для размещения между свариваемыми заготовками содержит два соединенных между собой элемента, выполненных из материалов, соответствующих по химическому составу материалам свариваемых заготовок. Один из указанных...
Тип: Изобретение
Номер охранного документа: 0002651101
Дата охранного документа: 18.04.2018
29.12.2018
№218.016.ac7e

Корундовая керамика и способ ее получения

Изобретение относится к области материалов для электронной техники, а именно к алюмооксидной керамике, используемой при изготовлении деталей СВЧ-приборов. Корундовую керамику получают из шихты, которая содержит электроплавленный корунд, оксид магния, оксисоль алюминия, легированную пентаоксидом...
Тип: Изобретение
Номер охранного документа: 0002676309
Дата охранного документа: 27.12.2018
23.02.2019
№219.016.c775

Способ изготовления функциональной поверхности

Изобретение относится к способу изготовления функциональной поверхности и может быть использовано в машиностроении, например, для формирования отражающих и других металлосодержащих покрытий. Осуществляют газодинамическое напыление порошковым материалом с размером частиц 0,01-50 мкм из выбранных...
Тип: Изобретение
Номер охранного документа: 0002353706
Дата охранного документа: 27.04.2009
+ добавить свой РИД