×
03.07.2019
219.017.a44b

Результат интеллектуальной деятельности: Способ получения гетероструктуры, стекло, обогащенное Si/δ* - BiO/стекло, обогащенное Bi, в системе BiO - SiO

Вид РИД

Изобретение

№ охранного документа
0002693062
Дата охранного документа
01.07.2019
Аннотация: Изобретение относится к способу получения гетероструктуры, которая может использоваться в качестве супер ионного проводника с защитным слоем и фотокатализатора с регулируемой активностью. Способ получения гетероструктуры стекло, обогащенное Si/δ*-BiO/стекло, обогащенное Bi, в системе BiO-SiO включает быстрое механическое смешивание исходных компонентов BiO и SiO, загрузку их в платиновый тигель, нагрев до 1047°С±20°С-1250±20°C с выдержкой не менее 15 минут с последующим охлаждением со скоростью 10-1000°C/сек. Технический результат – получение трехслойной гетероструктуры, состоящей из двух видов стекол и супер ионного проводника (-BiO), лишенная загрязнений и посторонних примесных фаз. 6 ил.

Способ относится к области химии и может быть использован в качестве супер ионного проводника с защитным слоем и фотокатализатора с регулируемой активностью.

В работе [Kun-Le Jia, Jin Qu, Shu-Meng Hao, Fei An, Ya-Qiong Jing, Zhong-Zhen Yu. One-pot synthesis of bismuth silicate heterostructures with tunable morphology and excellent visible light photodegradation performances // Journal of Colloid and Interface Science 506 (2017) 255-262] был предложен гидротермальный способ синтеза гетероструктур в системе Bi2O3-SiO2. Для этого 972 мг Bi(NO3)3⋅5H2O добавляли в 40 мл деионизированной воды в качестве раствора А, а 0,25 ммоль СТАВ растворяли в 10 мл деионизированной воды, как раствор Б. После перемешивани раствора А в течение 30 мин, добавляли раствор В. В полученный раствор добавляли 444 мкл TEOS и его значение pH затем доводили до 9 путем капания NH3⋅H2O при энергичном перемешивании. После дополнительного перемешивания в течение 0,5 ч при комнатной температуре смесь переносили в 100 мл автоклав, покрытый тефлоном. После того, как автоклав запечатывали и нагревали до 180°С в течение 24 часов, его охлаждали до комнатной температуры, естественным путем. Наконец, осадки собирали центрифугированием, промывали деионизированной водой и этанолом несколько раз и сушили в печи при 80°С в течение 10 часов.

Однако, при использовании данного способа не достигается:

1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду большого количества технологических операций, но еще и очень длительным по времени (более 37 часов);

2. использование в аналоге дополнительного оборудования (автоклав, центрифуги и т.д.), усложняет и удорожает процесс получения гетероструктуры;

3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение (промывка, обработка в центрифуге и т.д.) создают существенный риск загрязнения конечного материала посторонними веществами.

Похожие способы синтеза гетероструктур, имеющие схожие с данным аналогом недостатки и основанные на гидротермальном синтезе, также подробно рассмотрены в работах:

1. Amar Al-Keisya, Long Ren, Tian Zheng, Xu n Xu, Michael Higgins, Weichang Hao, and Yi Du. Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures // Dalton Trans., 2017, DOI: 10.1039/C7DT03193A;

2. Liang Shi, Chonglei Xu, Xun Sun, Hua Zhang, Zhaoxin Liu, Xiaofei Qu, and Fanglin Du. Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation // Chemical routes to materials, https://doi.org/10.1007/s10853-018-2442-x;

3. Yimai Liang, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji, Shucai Gan. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Applied Surface Science (2015), http://dx.doi.org/10.1016/j.apsusc.2015.01.116;

4. Wenjun Wang, Hefeng Cheng, Baibiao Huang, Xiaolei Liu, Xiaoyan Qin, Xiaoyang Zhang, Ying Dai. Hydrothermal synthesis of C3N4/BiOIO3 heterostructures with enhanced photocatalytic properties // Journal of Colloid and Interface Science 442 (2015) 97-102;

5. Di Liu, Wenqing Yao, Jun Wang, Yanfang Liu, Mo Zhang, Yongfa Zhu. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/B12SiO5photocatalyst // Applied Catalysis B: Environmental 172 (2015) 100-107.

В работе [Andriy V. Kozytskiy, Oleksandr L. Stroyuk, Mykola A. Skoryk, Volodymyr M. Dzhagan, Stepan Ya. Kuchmiy, Dietrich R.T. Zahn. Photochemical formation and photoelectrochemical properties of TiO2/Sb2S3 heterostructures // Journal of Photochemistry and Photobiology A: Chemistry 303 (2015) 8-16] был предложен способ синтеза гетероструктур методом осаждения. Этанол и 2-пропанол высушивали при продолжительном кипении свежеотжатым CaO; с последующей дистилляцией. Пленки Titania на FTO (FTO/TiO2) были приготовлены по методике: в 0,45 г этилцеллюлозы растворяли в 7,3 г (9 мл) n-бутанола, затем добавляли 1,8 г глицерина. Раствор кипятили с обратным холодильником до полной гомогенизации и смешивали с 0,9 г порошка Р25 титана. Суспензию помещали в ультразвуковую ванну в течение 1 ч, затем кипятили с обратным холодильником при 80°С в течение 30 мин. Полученную пасту наносили на FTO методом док-лезвия, поддерживая толщину слоя, равную одному слою скотч-ленты. Пленки сушили при 70°С в течение 30 мин и отжигали при 450°С на воздухе в течение 1 часа.

Фотокаталитическое осаждение Sb2S3 на поверхности пленок TiO2 проводили из растворов этанола, содержащих SbCl3 (0,01М) и S8 (0,002М в пересчете на элементарную серу) в оптических стеклянных кюветах при непрерывном течении аргона. Раствор (5 мл) эвакуировали и освещали сфокусированным ультрафиолетовым светом (λ=310-390 нм) из ртутной лампы высокого давления мощностью 1000 Вт с интенсивностью 20 мВт/см2. Затем осажденные пленки аморфного Sb2S3 отжигались при 330°С в потоке аргона.

Пленки гидроксилсульфида индия(III) Inx(OH)ySz осаждались на поверхности TiO2. 20 мл водного 0,1М раствор тиоацетамида и 0,025М InCl3 нагревали до 70°С, затем добавляли водный раствор 0,25М раствора уксусной кислоты. После этого пленку FTO/TiO2 погружали в раствор и выдерживали в течение 10, 15, 20 или 40 минут, чтобы варьировать количество Inx(OH)ySz. Пленки SbO (ОН) на поверхности сульфида сурьмы осаждали, удерживая пленки FTO/TiO2/Sb2S3 погруженными в 0,01М SbCl3 в этаноле в течение 5 мин. с последующим погружением пленки в дистиллированную воду. Эта последовательная процедура повторялась до трех раз. Слой SbO (ОН) образуется в результате быстрого гидролиза SbCl3 при нейтральном pH.

Однако, при использовании данного способа не достигается:

1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду огромного количества технологических операций, но еще и очень длительным по времени;

2. использование в аналоге дополнительного оборудования (ультразвуковые установки, холодильники, баллоны с аргоном и средства его подачи, установки облучения ультрафиолетом и т.д.), существенно усложняет и удорожает процесс получения гетероструктуры;

3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение создают существенный риск загрязнения конечного материала посторонними веществами.

Похожие способы синтеза гетероструктур, имеющие схожие с данным аналогом недостатки и основанные на разных способах осаждения, также подробно рассмотрены в работах:

1. R. Loganathan, М. Jayasakthi, K. Prabakaran, R. Ramesh, P. Arivazhagan, K. Baskar. Studies on dislocation and surface morphology of AlxGa1-xN/GaN heterostructures grown by MOCVD // Journal of Alloys and Compounds 616(2014)363-371;

2. Subhash Chand and Rajender Kumar. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique // Journal of Alloys and Compounds, Accepted Date: 6 June 2014, DOI: http://dx.doi.Org/10.1016/j.jallcom.2014.06.042;

3. B.C. Luo, J. Wang, M.M. Duan, K.X. Jin, C.L. Chen. Synthesis and transport properties of Ca3Co4O9/ZnO heterostructure // Materials Letters 120 (2014) 133-135;

4. S. Upadhyay, A. Mandal, N. В. V. Subrahmanyam, P. Singh, P. Shete, B. Tongbram, S. Chakrabarti. Effects ofhigh-energy proton implantation on the luminescence properties of InAs submonolayer quantum dots // Journal of Luminescence 171 (2016) 27-32;

5. Yanqin Wang, Xiaofang Cheng, Xiaoting Meng, Hongwu Feng, Shaogui Yang, Cheng Sun. Preparation and characterization of Ag3PO4/BiOI heterostructure photocatalyst with highly visible-light-induced photocatalytic properties // Journal of Alloys and Compounds 632 (2015) 445-449;

6. Xiuzhen Zheng, Danzhen Li, Xiaofang Li, Jing Chen, Changsheng Cao, Jialin Fang, Jubao Wang, Yunhui He, Yi Zheng. Construction of ZnO/TiO2photonic crystal heterostructures forenhanced photocatalytic properties // Applied Catalysis B: Environmental 168 (2015) 408-415.

В работе [Hong-Jian Feng, M. Wang, F. Liu, B. Duan, J. Tian, X. Guo. Enhanced optical properties and the origin of carrier transport in BiFeO3/TiO2 heterostructures with 109° domain walls // Journal of Alloys and Compounds 628 (2015) 311-316] был предложен способ синтеза гетероструктур с помощью золь-гель метода. Золи BFO были приготовлены с использованием нитрата железа, нитрата висмута и уксусной кислоты в виде растворов веществ и 2-метоксиэтанола в качестве раствора. Раствор доводили до значения pH 4-5 путем добавления азотной кислоты. Затем к раствору добавляли лимонную кислоту в молярном соотношении 1:1 по отношению к нитратам металла в качестве комплексообразователя. Смесь перемешивали в течение 24 ч с получением золя. Конечная концентрация предшественника составляла 0,3 моль/л. Пленки были покрыты спиртом на стеклянных подложках с точки зрения его рентабельного применения. После каждого спинового покрытия пленки сушили при 80°С в течение 2 часов. Полученные пленки отжигали при 500°С на воздухе в течение 3 часов. Толщина пленок может контролироваться количеством слоев, покрытых спин-покрытием. Раствор предшественника ТО получали путем смешивания соответствующих количеств тетрабутилтитаната, растворенного в этаноле, и диэтаноламине, по каплям добавляя к перемешиваемому раствору в течение 2 часов. Пленки ТО фильтровали на пленках BFO и прокаливали при 500°С в течение 1 часа с толщиной пленок, контролируемых покрытыми слоями.

Однако, при использовании данного способа не достигается быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду большого количества технологических операций, но еще и длительным по времени.

Похожий способ синтеза гетероструктур, имеющий схожие с данным аналогом недостатки и основанный на золь-гель методе, также подробно рассмотрен в работе: Bilal Masood Pirzada, Niyaz A. Mirl, Nida Qutub, Owais Mehraj, Suhail SabirM M. Muneer. Synthesis, characterization and optimization of photocatalytic activityof TiO2/ZrO2 nanocomposite heterostructures. Materials Science and Engineering В 193 (2015) 137-145.

Сложный комбинированный способ синтеза был предложен отечественными учеными [В.А. Кутвицкий, О.В. Сорокина, Л.П. Маслов. Гетероструктуры на основе висмутсодержащих оксидных фаз и их использование в целях аналитического контроля. Часть 1. // Москва, МИТХТ, 2012]. В данной работе приведено несколько способов синтеза.

Способ 1. Технология синтеза многослойных гетерогенных образцов сравнения (МГОС):

Подготовка соединяемого материала (монокристаллические подложки). Монокристаллы соединений, участвующих в создании гетероструктуры, выращивали из расплава по методу Чохральского и нарезали на пластины. Затем проводилась процедура создания макрорельефа на поверхности пластин. Для этого их обезжиривали (карбонат натрия 6-10 мл, силикат натрия 5-10 мл, вторичный алкилсульфат «Прогресс» 15-20 мл) при температуре 80-90°С в течение 20-30 минут, с последующей промывкой в кипящей дистиллированной воде. После обезжиривания пластины сушили на воздухе. Затем на них наносили пленку фоторезиста марки ФП-25, на установке вертикального втягивания. После чего экспонировали полученный слой путем засвечивания фоторезиста в необходимых участках платины. Проявляли фоторозист в 0,8% растворе КОН марки о.с.ч. в течение 30-40 сек. После проявки промывали проточной водой до полного удаления щелочи и сушили, с последующим повторением задубливания. Температура повторного задубливания 140-150°С, а время - 1,5-2 ч.

Подготовка соединяющего материала. Исходные оксиды отжигали в муфельной печи до окончания убыли массы. Затем из отожженных оксидов готовили навески в нужном стехиометрическом соотношении, перетирали в агатовой ступке 1,5-2 часа и прессовали в таблетки. Эти таблетки на керамической подложке помещали печь для твердофазного синтеза (температура и время не указано). Каждые 20 часов синтеза, проводили промежуточное перетирание для гомогенизации. После окончания синтеза, соединение перетирали в агатовой ступке и помещали между слоями монокристаллических пластин в печь, в которой происходило плавление соединения. Температура нагрева выбиралась на несколько десятков градусов выше ликвидуса данного соединения. После процедуры наплавления, полученный материал шлифовали и полировали. Подобных слоев изготавливалось 5-6.

Способ 2. Формирование газочувствительного слоя на поверхности германоэвлитина. На поверхности монокристаллических подложек висмутсодержащих соединений при их обработке концентрированной ортофосфорной кислотой, образуется слой осадка одного и того же состава, соответствующего ортофосфату висмута. Использование слоя осадка в качестве сенсорного элемента гетероструктуры, возможен, лишь при активации его путем тех или иных примесей или модифицирования. Поэтому вначале проводили химическую обработку порошка висмутсодержащего оксида до полного превращения его в ортофосфат. Полученный порошок сушили на воздухе при комнатной температуре в течение 48 ч, после чего обрабатывали насыщенным раствором гептамолибдата аммония, затем сушили 1 ч. на воздухе и насыщали МФК. Затем образец выдерживали 72 часа на воздухе при комнатной температуре, после чего проводили отжиг при 300°С в течение 2-х часов.

Однако, при использовании данного способа не достигается:

1. быстрое получение искомой фазы, т.к. указанный способ является не только более трудоемким, в виду огромного количества технологических операций, но еще и очень длительным по времени;

2. использование в аналоге дополнительного оборудования, существенно усложняет и удорожает процесс получения гетероструктуры;

3. введение в раствор дополнительных компонентов реакции, а также постоянное его перемещение создают существенный риск загрязнения конечного материала посторонними веществами.

Близкий к данному аналогу способ, комбинирующий в себе множество разных технологических приемов и имеющий схожие недостатки, был предложен также учеными из Мексики [A.G. L.A. J. M.A. B.A. Puente-Urbina, E. Mendoza-Mendoza. Synthesis, structural characterization and photocatalytic activity of Bi-based nanoparticles // DR ESMERALDA MENDOZA Orcid ID: 0000-0001-9927-1895].

Следует также отметить и столько экзотический способ синтеза гетероструктур, как микроволновая обработка [Nguyen Dang Phu, Luc Huy Hoang, Peng-Cheng Guo, Xiang-Bai Chen, Wu Ching Chou. Study of photocatalytic activities of Bi2WO6/BiVO4 nanocomposites]. Данный способ также, как и многие рассмотренные выше аналоги, имеет схожие с ними недостатки: весьма длителен по времени, состоит из большого числа технологических операций, требует дополнительного оборудования и дополнительных компонентов реакции.

Общий вывод по аналогам: указанные аналоги в большинстве своем требуют очень большого количества технологических операций с использованием дополнительного оборудования, а также весьма длительны по времени. Это влечет за собой большие затраты, сильно усложняет и удорожает получение гетероструктур.

Наиболее близким к заявляемому способу является прототип, описание которого приведено в работе [В.В. Борисова, Е.В. Миронова, Е.С. Брагина, И.А. Бондарь. Синтез и физические характеристики стекол в системе Bi2O3-SiO2-GeO2-MoO3, используемых в качестве элементов сенсорных гетероструктур // Евразийский Союз Ученых (ЕСУ) #12 (45), 2017| ХИМИЧЕСКИЕ НАУКИ] предложили твердофазный способ синтеза. В качестве исходных веществ для получения стекловидных образцов использовали Bi2O3 (ТУ 6-09-3558-78) и GeO2 (ТУ6-09-1418-76) квалификации «ос.ч», SiO2 (ГОСТ 9428-73) квалификации «ч.д.а», MoO3 (ТУ 6-09-4471-77) квалификации «ч». Сначала, путем твердофазного синтеза оксидов висмута, кремния и германия были получены соединения со структурой эвлитина 2Bi2O3:3ЭО2 (где Э - Ge, Si). MoO3 ввод или в виде соединения с Bi2O3 при соотношении компонентов 2:3. Процесс твердофазного синтеза для всех соединений проводили при температуре 750°С в течение 48 часов, что обеспечивало 95%-ный выход продуктов реакций. Из полученных соединений готовили шихту массой около 12 г, содержание компонентов в которой составляло: Bi2O3 - 80% масс., MoO3 - 3% масс., SiO2 - от 5% масс. до 11% масс., GeO2 - до 100% массы. Навески помещали в агатовую ступку и тщательно перемешивали в течение 15 минут для гомогенизации смеси. Готовую смесь переносили в корундовый тигель, который ставили в предварительно нагретую до температуры 500°С муфельную печь и выдерживали в течение 30 минут при данной температуре для улучшения распределения MoO3. Затем температуру в печи повышали до 1150°С, шихту плавили при указанной температуре и выдерживали в течение 2 часов, перемешивая каждые 30 минут после расплавления. После гомогенизации расплава производили закалку образцов в «холодный» металлический тигель (диаметр основания не менее 20 мм). При этом получали образцы в форме диска диаметром не менее 20 мм и толщиной 2-3 мм. Для снятия внутренних напряжений и соответственно, улучшения прочностных характеристик синтезированные стекла отжигали в муфельной печи при температуре 350°С в течение 9 часов.

Однако, при использовании данного способа не достигается:

1. быстрое получение искомой фазы, т.к. указанный способ очень длителен по времени;

2. быстрое получение искомой фазы, т.к. указанный способ включает большое число последовательных технологических операций;

3. использование в синтезе корундового тигля, может привести к загрязнению получаемого материала.

Основная задача изобретения состоит в повышении эффективности процесса получения гетероструктур, а также снижения временных затрат на их получение.

Для достижения поставленной задачи, заявляемый Способ получения гетероструктуры стекло--Bi2O3/стекло-2 в системе Bi2O3-SiO2 содержит следующую совокупность существенных признаков, сходных с прототипом:

1. использование в качестве одних из исходных реагентов чистых Bi2O3 и SiO2;

2. необходимость проведения термической обработки, для успешного синтеза.

По отношению к заявляемому способу указанный прототип имеет следующие отличительные признаки и недостатки:

1. невозможно быстрое получение искомой фазы, т.к. указанный способ очень длителен по времени;

2. невозможно быстрое получение искомой фазы, т.к. указанный способ включает большое число последовательных технологических операций;

3. в виду высокой активности оксида висмута, при нагревании он активно взаимодействует практически со всеми веществами кроме чистой платины и растворяет их. В расплавленном состоянии (выше 825°С) этот процесс идет наиболее интенсивно, поэтому если при твердофазном синтезе и тем более при плавлении данного оксида, использовать корундовый тигель вместо платинового, то это приведет к существенному загрязнению получаемого вещества материалом, из которого изготовлен сам тигель (т.е. корундом).

Между отличительными признаками и решаемой задачей существует следующая причинно-следственная связь.

Выбор граничных параметров температуры начала охлаждения расплава (1047оС±20°С-1250±20°С) обусловлен высокотемпературными областями расплава, каждая из которых имеет свое, особенное строение. Известно, что на фазовой диаграмме системы Bi2O3-SiO2 область расплава может быть разделена на 3 температурные зоны А, В и С (фиг. 1) [Каргин В.П. Жереб В.П., Скориков В.М. Стабильное и метастабильное равновесия в системе Bi2O3-SiO2 // Журнал неорганической химии. 1991. Т. 36. №10. С. 2611-2616]. Однако, для данного стехиометрического состава (50% мол. Bi2O3 - 50% мол. SiO2), областей расплава будет всего две: «В» и «С» (фиг. 1). Нами было установлено, что при перегреве расплава в температурную зону С, при дальнейшем его охлаждении мы попадаем в купол расслоения, реализующийся в метастабильной диаграмме состояния системы Bi2O3-SiO2 [Жереб В.П. Физико-химические исследования метастабильных равновесий в системах Bi2O3-ЭО2, где Э - Si, Ge, Ti. Автореферат диссертации… к.х.н. - М.: ИОНХ АН СССР. 1980. - 22 с.] (фиг. 2), что приводит к расслоению расплава. Одна часть расплава при этом будет более обогащена оксидом кремния (стекло-1), а другая часть - оксидом висмута (стекло-2). При дальнейшем же охлаждении этих жидких слоев, на их границе формируется состояние, которое невозможно получить в стеклообразном состоянии в виду низкого содержания стеклообразующего элемента (оксида кремния), и в результате образуется кристаллическое, а именно - -Bi2O3. Так как данное соединение, соответствующее стехиометрическому составу около 22 мол. % SiO2 не может стекловаться, то оно выпадает в виде мельчайших кристалликов прямо в середине массива стекла. Таким образом, в результате мы получаем трехслойный материал, состоящий из двух видов стекол и супер ионного проводника, расположенного в центре.

Уникальность данного способа заключается в том, что при синтезе не требуется никакого отдельно получения слоев с последующим их соединением между собой - весь процесс синтеза осуществляется в одну стадию. Все слои, образующие гетероструктуру, образуются и растут одновременно. А сам супер ионный проводник, кристаллизуется в центре, в основном объеме материала, надежно защищенный с двух сторон аморфным материалом.

Нижний диапазон температур (1047°С±20°С) выбран согласно диаграмме (фиг. 1) и обозначает нижнюю границу зоны С. Нагрев же выше верхнего диапазона температур (1250°С±20°С) возможен, но является нецелесообразным в виду более высоких энергетических затрат и более быстрого износа материала тигля.

Выбор граничных параметров выдержки при заданном интервале температур (не менее 15 минут), должен обеспечивать полное взаимное растворение исходных компонентов друг в друге, а также обеспечивать переход расплава в однородное состояние.

Выбор граничных параметров (10-1000°С/сек) охлаждения обусловлен тем, что ключевым фактором при получении данной гетероструктуры, является еще и скорость охлаждения расплава. При низкой скорости охлаждения, слои расплава, образующиеся при попадании в купол расслоения (фиг. 2), будут успевать гомогенизироваться, что приведет с получению просто однородной стеклообразной массы. Поэтому скорость охлаждения, должна быть достаточно высокой, чтобы подавить процесс гомогенизации и сохранить расслоение, для последующего формирования синтезируемой гетероструктуры. Нижний диапазон (20°С/сек) показывает ту скорость, выше которой мы гарантировано получаем данную гетероструктуру. Охлаждение же ниже 10°С/сек может приводить либо к полному стеклованию, либо (если скорость будет существенно ниже) частичному или даже полному расстекловвыванию данного материала. Скорость же выше верхней границы диапазона (1000°С/сек) возможна, но требует, как правило, для своей реализации специального оборудования, что удорожает процесс получения продукта, а также способствует накоплению в нем больших напряжений.

Способ иллюстрируется графически, где:

Фиг. 1 - Температурные зоны 1 в области расплава на фазовой диаграмме стабильного равновесия 2 системы Bi2O3-SiO2;

Фиг. 2 - Фазовая диаграмма метастабильных равновесий системы Bi2O3-SiO2, построенная по результатам охлаждения расплава от температур, лежащих в зоне С;

На Фиг. 3 - Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3-SiO2), полученного заявляемым способом, общий вид, увеличение - 50 крат;

На Фиг. 4 - Результаты микроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3-SiO2), полученного заявляемым способом, кристаллическая часть, увеличение - 1000 крат;

На Фиг. 5 - Результаты рентгенофазового анализа образца гетероструктуры состава 1:1 мол. % (система Bi2O3-SiO2), полученного заявляемым способом;

На фиг. 6 - Результаты макроструктурного анализа образца гетероструктуры, состава 1:1 мол. % (система Bi2O3-SiO2), полученного заявляемым способом, увеличение 5 крат.

Сущность изобретения поясняется диаграммой, а также результатами рентгенофазового и микроструктурного анализа.

Нами было установлено, что после сплавление исходных реагентов (Bi2O3-SiO2) в заданном температурном интервале (1047°С±20°С-1250±20°С), выдержка в нем не менее 15 минут и последующее охлаждение со скоростью 10-1000°С/сек, приводит к надежному формированию данной гетероструктуры. Это объясняется особенностями строения расплава в зоне «С» (фиг. 1), обеспечивающими переход к метастабильной диаграмме с куполом расслоения и попаданием в этот купол, с целью получения многослойного состояния расплава. Ускоренное же охлаждение, подавляет процессы гомогенизации в жидкости и обеспечивает сохранение данных слоев, что приводит к образованию на границе раздела между ними третьего, кристаллического соединения (супер ионного проводника).

Таким образом, грамотный подбор режима термической обработки расплава, позволяет легко и быстро получать подобные уникальные многослойные гетероструктуры. Получать существенно быстрее, чем во всех как отечественных, а так и зарубежных аналогах (весь процесс синтеза занимает около 20 минут).

Полученные данные подтверждаются макро- и микроструктурным анализом (фиг. 3-4, 6), на котором ясно видно двухфазное строение полученного материала в виде двух пластин стекла, между которыми расположен широкий участок кристаллов -Bi2O3. Существование именно двухфазной области состоящей из аморфного материала и кристаллической фазы, указанной формулы, без каких либо посторонних примесей и других фаз подтверждает также рентгенофазовый анализ, приведенный на фиг. 5.

По результатам анализов, представленным на фиг. 3-6, можно сделать вывод о том, что решающую роль при быстром синтезе данной гетроструктуры играет температурная область расплава, из которой ведется охлаждение, а также скорость охлаждения расплава.

Заявляемый «Способ получения гетероструктуры стекло-1/6 *-Bi2O3/стекло-2 в системе Bi2O3-SiO2» может быть реализован с помощью следующих материальных объектов:

1. печь - нагревательное устройство с рабочей камерой, обеспечивающее нагревание материала до заданной температуры в интервале до 1200°С;

2. платиновый тигель.

Пример конкретного выполнения:

1. в качестве исходных компонентов берем порошки оксида висмута (Bi2O3) и диоксида кремния (SiO2) в соотношении 50:5 мол. %;

2. исходные реагенты помещаем в платиновый тигель и перемешиваем платиновым шпателем или металлической ложкой;

3. нагреваем смесь до 1200°C с выдержкой 1 час;

4. закаливаем получившийся расплав вместе с тиглем в воду.

Как показали результаты опытной проверки, при использовании заявляемого способа обеспечивается достижение следующих результатов:

1. получена трехслойная гетероструктура, состоящая из двух видов стекол и супер ионного проводника (-Bi2O3), лишенная загрязнений и посторонних примесных фаз;

2. заявляемый способ требует намного меньше времени на синтез, чем все известные современные аналоги, приведенные выше, что существенно снижает не только временные, но также и экономические затраты на производство. По времени синтеза, по сравнению с самым быстрым способом получения гетероструктур из аналогов, заявляемый способ эффективнее на 1500%, а с самым длительным - превышает его в 181,5 раза;

3. заявляемый способ не требует никакого дополнительного оборудования, только тигель и печь. Это существенно упрощает процесс синтеза и делает его экономически более выгодным.

Способ получения гетероструктуры: стекло, обогащенное Si/δ*-BiO/стекло, обогащенное Bi, в системе BiO-SiO, включающий предварительное механическое смешивание исходных компонентов, отличающийся тем, что исходные компоненты - оксид висмута (BiO) и оксид кремния (SiO) после быстрого механического смешивания помещают в платиновый тигель и нагревают до 1047°С±20°С-1250±20°С с выдержкой не менее 15 минут, после чего охлаждают со скоростью 10-1000°С/сек.
Способ получения гетероструктуры, стекло, обогащенное Si/δ* - BiO/стекло, обогащенное Bi, в системе BiO - SiO
Способ получения гетероструктуры, стекло, обогащенное Si/δ* - BiO/стекло, обогащенное Bi, в системе BiO - SiO
Способ получения гетероструктуры, стекло, обогащенное Si/δ* - BiO/стекло, обогащенное Bi, в системе BiO - SiO
Источник поступления информации: Роспатент

Показаны записи 121-130 из 324.
10.05.2018
№218.016.45d4

Способ подготовки обожженных анодов для электролиза алюминия

Изобретение относится к способу подготовки обожженных анодов для электролиза алюминия. Способ включает нагрев анода перед помещением его в расплав электролита. Нагрев выполняют в герметичном объеме посредством тока высокой частоты 20-120 МГц до температуры поверхности анода 350-800°С....
Тип: Изобретение
Номер охранного документа: 0002650359
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.4721

Способ определения температурной области работоспособности смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при...
Тип: Изобретение
Номер охранного документа: 0002650602
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.489a

Способ отбора пробы жидкого металла

Изобретение относится к металлургическому производству, в частности к производству алюминия, и может быть использовано при подготовке проб алюминия и его сплавов для анализа на содержание водорода. Производят погружение изложницы в расплав. Заполняют изложницу жидким металлом и проводят далее...
Тип: Изобретение
Номер охранного документа: 0002651031
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.48e4

Устройство для обогрева почвы

Изобретение относится к средствам обогрева почвы и может использоваться в промышленных и индивидуальных теплицах для выращивания ранних растений, овощных культур, цветов, кустов и деревьев, а также в животноводческих сооружения, требующих подогрева почвы. Устройство содержит солнечный...
Тип: Изобретение
Номер охранного документа: 0002651276
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4a65

Способ подземной разработки наклонных рудных залежей

Изобретение относится к горной промышленности и может быть использовано при подземной разработке наклонных рудных месторождений полезных ископаемых на больших глубинах в условиях повышенного горного давления. Способ включает отработку залежи сверху вниз вкрест простирания рудного тела, под...
Тип: Изобретение
Номер охранного документа: 0002651727
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4a7c

Способ вентиляции карьеров

Изобретение относится к горному делу, а именно к проветриванию карьеров, и может быть использовано для интенсификации воздухообмена в карьерном пространстве, очистки воздуха. Способ вентиляции карьеров путем организации воздухообмена атмосферы карьера за счет прохождения потока воздуха через...
Тип: Изобретение
Номер охранного документа: 0002651670
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4ade

Способ интенсификации естественного воздухообмена в глубоких карьерах

Изобретение относится к горнодобывающей отрасли, в частности к способу интенсификации естественного воздухообмена в глубоких карьерах. Технический результат заключается в повышении интенсивности естественного проветривания карьера и увеличении объема карьерного пространства, проветриваемого...
Тип: Изобретение
Номер охранного документа: 0002651666
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4af6

Устройство автономной добычи твердых полезных ископаемых со дна континентального шельфа

Изобретение относится к горной промышленности и может быть использовано при добыче россыпных месторождений твердых полезных ископаемых со дна шельфа. Устройство автономной добычи твердых полезных ископаемых со дна континентального шельфа, включающее грейферный ковш, состоящий из емкости и...
Тип: Изобретение
Номер охранного документа: 0002651660
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b23

Устройство для эвакуации горнорабочих в аварийной ситуации

Изобретение относится к горнодобывающей промышленности и может быть использовано для защиты и эвакуации горнорабочих из тупиковых выработок при внезапных выбросах газа, загазованности выработок и возникновении в них пожара. Техническим результатом является оперативная эвакуация горнорабочих из...
Тип: Изобретение
Номер охранного документа: 0002651663
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4c98

Пространственная плита покрытия

Изобретение относится к строительству, а именно к покрытию зданий и сооружений. Технический результат заключается в повышении несущей способности большепролетной плиты покрытия. Пространственная плита покрытия разреженной структуры включает верхний и нижний пояса криволинейного очертания,...
Тип: Изобретение
Номер охранного документа: 0002652045
Дата охранного документа: 24.04.2018
Показаны записи 1-10 из 10.
20.08.2014
№216.012.eaa0

Способ формирования микроструктуры эвтектического al-si сплава

Изобретение относится к металлургии, в частности к способу термообработки алюминиево-кремниевого сплава эвтектического состава. Сплав нагревают с печью до температуры на 5-7°C выше температуры эвтектического равновесия сплава, выдерживают сплав при этой температуре в течение 120-150 мин, затем...
Тип: Изобретение
Номер охранного документа: 0002525872
Дата охранного документа: 20.08.2014
20.01.2018
№218.016.194e

Способ получения германата висмута bigeo

Изобретение относится к области химии и может быть использовано для катализаторов при получении необходимых в промышленности газов и для синтеза высокопрочной керамики. Способ получения германата висмута BiGeO включает предварительное механическое смешивание исходных порошков оксида висмута...
Тип: Изобретение
Номер охранного документа: 0002636090
Дата охранного документа: 20.11.2017
29.05.2018
№218.016.574d

Способ получения силиката висмута bisio

Изобретение относится к области химии и может быть использовано для катализаторов для получения необходимых в промышленности газов и в синтезе высокопрочной керамики. Способ получения силиката висмута BiSiO включает предварительное механическое смешивание исходных порошков оксида висмута BiО и...
Тип: Изобретение
Номер охранного документа: 0002654968
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.578d

Способ получения германата висмута bigeo

Изобретение относится к технологии получения германата висмута BiGeO, который может быть использован в качестве исходного материала для выращивания чистых, бездефектных монокристаллов, а также в гамма-спектроскопии, ядерной промышленности, в медицине, оптоэлектронике, физике высоких энергий....
Тип: Изобретение
Номер охранного документа: 0002654946
Дата охранного документа: 23.05.2018
04.09.2018
№218.016.82a7

Способ получения силиката висмута bisio методом кристаллизации в тигле

Изобретение относится к области химии и может быть использовано в области пьезо- и оптоэлектроники. Способ получения силиката висмута BiSiO методом кристаллизации в тигле включает предварительное механическое смешивание исходных порошков оксида висмута BiO и оксида кремния SiO, нагревание...
Тип: Изобретение
Номер охранного документа: 0002665626
Дата охранного документа: 03.09.2018
15.10.2018
№218.016.922f

Способ получения силиката висмута bisio методом литья

Изобретение относится к области химии и может быть использовано в области пьезо- и оптоэлектроники. Способ получения силиката висмута BiSiО методом литья включает предварительное механическое смешивание исходных компонентов ВiО и SiO и нагрев полученной смеси в платиновом тигле до заданной...
Тип: Изобретение
Номер охранного документа: 0002669677
Дата охранного документа: 12.10.2018
20.05.2019
№219.017.5c45

Способ получения германата висмута bigeo

Изобретение относится к области химии и может быть использовано при получении исходной шихты для выращивания монокристаллов для лазерной техники. Способ получения германата висмута BiGeO включает механическое смешивание исходных порошков оксида висмута BiO и оксида германия GeO при мольном...
Тип: Изобретение
Номер охранного документа: 0002687924
Дата охранного документа: 16.05.2019
14.06.2019
№219.017.82e5

Способ получения регулируемой гетероструктуры стекло/δ*-вio+bisio в системе bio-sio(варианты)

Изобретение относится к области химии и может быть использовано в качестве суперионного проводника с защитным слоем и фотокатализатора с регулируемой активностью и с защитным слоем. Способ получения регулируемой гетероструктуры BiO+BiSiO включает предварительное механическое смешивание исходных...
Тип: Изобретение
Номер охранного документа: 0002691334
Дата охранного документа: 11.06.2019
01.12.2019
№219.017.e98e

Способ получения соединения δ*-bio в системе bio-sio

Способ относится к области химии и может быть использован для получения адсорбента токсичных соединений. Способ получения соединения δ-BiO в системе BiO-SiO включает механическое смешивание исходных компонентов, нагрев, выдержку и охлаждение. Исходные компоненты смешивают при соотношении (в...
Тип: Изобретение
Номер охранного документа: 0002707598
Дата охранного документа: 28.11.2019
27.06.2020
№220.018.2bc2

Способ получения германата-силиката висмута

Изобретение относится к области химии и может быть использовано для получения метастабильного соединения с кристаллической структурой BiGeO с добавлением оксида кремния (SiO) без изменения кристаллической структуры материала. Способ получения германата-силиката висмута включает предварительное...
Тип: Изобретение
Номер охранного документа: 0002724760
Дата охранного документа: 25.06.2020
+ добавить свой РИД