×
19.06.2019
219.017.8926

Результат интеллектуальной деятельности: СПОСОБ СЕЛЕКТИВНОГО ОКИСЛЕНИЯ D-ГЛЮКОЗЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу селективного окисления D-глюкозы в водном растворе путем барботирования чистым кислородом при атмосферном давлении в присутствии подщелачивающего агента и катализатора, включающего нанодисперсно распределенные частицы металлического рутения на носителе, где в качестве носителя используют сверхсшитый полистирол, предварительно пропитанный солью рутения RuOHCl концентрацией 1.100÷111.1 мг/л. Представленный способ может быть использован в химической, пищевой, фармацевтической промышленности для получения глюконата кальция и D-арабинозы. Способ позволяет получать соли D-глюконовой кислоты с выходом около 95% с сохранением высокой активности и стабильности катализатора в течение 15 рабочих циклов. 1 з.п. ф-лы, 1 табл.

Изобретение относится к тонкому органическому синтезу и может быть использовано в химической, пищевой, фармацевтической промышленности для получения глюконата кальция и D-арабинозы.

Известен способ окисления глюкозы для получения глюконовой кислоты методом жидкофазного окисления, который заключается в селективном окислении глюкозы в присутствии палладий-висмутого катализатора, нанесенного на оксидный носитель Al2O3. Содержание активного металла составляло 2%. Окисление проводилось в водном растворе с непрерывным добавлением подщелачивающего агента NaHCO3 или Na3CO3 и барботировании чистого кислорода или кислорода воздуха при температуре от 40 до 80°С, pH от 7 до 11. Концентрация глюкозы составляла от 10 до 1500 ммоль/л, концентрация катализатора от 0.1 до 10 г/л. При этом общий выход глюконовой кислоты составлял от 95 до 99% (Biella, Prati und Rossi, Journal of Catalysis, 206 (2002), 242-247).

Недостатком этого способа является применение высокотоксичного металла висмута, что в промышленных масштабах производства применяемого катализатора может привести к загрязнению окружающей среды.

Известен способ окисления глюкозы для получения глюконовой кислоты методом жидкофазного окисления, который заключается в селективном окислении глюкозы в присутствии палладийсодержащих катализаторов, нанесенных на оксидный носитель Al2O3 или углерод. Содержание активного металла составляло 2%. Окисление проводилось в водном растворе с непрерывным добавлением подщелачивающего агента Na2CO3 и барботировании чистого кислорода при температуре от 40 до 60°C, pH от 8 до 11. Концентрация глюкозы составляла от 1 до 40%, при этом общий выход глюконовой кислоты составлял от 50 до 92,5% (DE, №3607922, кл. С07С 51/26, 1966.10.13).

Недостатком этого способа является низкая степень конверсии глюкозы при низкой скорости окисления глюкозы.

Прототипом заявляемого изобретения является способ окисления глюкозы для получения глюконовой кислоты методом жидкофазного окисления, который заключается в селективном окислении глюкозы в водном растворе при барботировании чистым кислородом или кислородом воздуха в присутствии подщелачивающего агента и катализатора, включающего нанодисперсно распределенные частицы металла на носителе. Катализатор включает нанодисперсно распределенные частицы золота, нанесенные на оксидный носитель TiO2, SiO2, ZrO2, Al2O3, MgO, CaO, BaO или углерод. Содержание активного металла составляло 0.1-5.0%. В качестве подщелачивающего агента используют NaHCO3 или Na2CO3, барботирование проводят чистым кислородом или кислородом воздуха при температуре 20-140°C, pH 7-11, давлении от 1 до 25 атмосфер. Концентрация D-глюкозы составляет 10-1500 ммоль/л, концентрация катализатора 0.1-10 г/л. При этом степень конверсии D-глюкозы составила 95-99% (DE, № WO/2004/099114, кл. С07С 51/235, 2004.11.18).

Основным недостатком прототипа является необходимость применения дорогостоящего металла, что приведет к удорожанию стоимости конечного продукта окисления. Кроме того, указанные каталитические системы обладают низкой стабильностью и низкой скоростью окисления D-глюкозы.

Задачей изобретения является разработка способа окисления D-глюкозы с использованием нового полимерного наноструктурированного катализатора, обеспечивающего повышение технологичности, эффективности и стабильности процесса селективного окисления D-глюкозы.

Техническим результатом изобретения является получение натриевой соли D-глюконовой кислоты с высокой степенью чистоты с высокой степенью конверсии D-глюкозы и селективности процесса ее окисления, а также применение катализатора, сохраняющего высокую активность и стабильность в течение 15 рабочих циклов.

Поставленная задача и указанный технический результат достигаются тем, что в способе селективного окисления D-глюкозы, включающем селективное окисление глюкозы в водном растворе при барботировании чистым кислородом в присутствии подщелачивающего агента и катализатора, включающего нанодисперсно распределенные частицы металла на носителе, согласно изобретению окисление проводят при атмосферном давлении, в качестве нанодисперсно распределенных частиц металла используют рутений, а в качестве носителя - сверхсшитый полистрирол, предварительно пропитанный солью рутения RuOHCl3 концентрацией 1.100÷111.1 мг/л. Концентрация D-глюкозы при окислении составляет 28÷2800 ммоль/л.

Проведение процесса селективного окисления D-глюкозы при атмосферном давлении обеспечивает высокую технологичность, эффективность получения D-глюконовой кислоты и экономичность способа.

Сверхсшитый полистирол применяется в качестве носителя для получения гетерогенного наноструктурированного металлосодержащего катализатора, так как его полимерная матрица способствует формированию нанокластерных частиц активного металла с оптимальной степенью активности гетерогенного катализатора. В качестве активной части катализатора применяется металл переходной группы - рутений, так как соль этого металла обладает оптимальной химической структурой для формирования большего количества активных центров на поверхности сверхсшитого полистирола, что положительно влияет на процесс селективного окисления D-глюкозы.

В процессе разработки способа селективного окисления D-глюкозы было исследовано применение в качестве активной части катализатора таких металлов, как никель, рутений, палладий, платина, золото. Было определено, что катализатор, активную часть которого составлял рутений, обладает наибольшей активностью и стабильностью в течение 15 рабочих циклов.

Использование раствора соли RuOHCl3 концентрацией меньше 1.10 мг/л металла приводит к формированию большего количества наночастиц и к уменьшению кластерообразования металлических наночастиц, но оказывается недостаточным для активного и стабильного действия каталитических систем. Увеличение количества металла больше 111.1 мг/л приводит к кластерообразованию и формированию более крупных наночастиц, что также отрицательно влияет на активность, стабильность и селективность гетерогенных катализаторов.

Способ осуществляют следующим образом. Предварительно готовят катализатор, включающий нанодисперсно распределенные частицы металла в сверхсшитом полистироле. При изготовлении катализатора носитель - сверхсшитый полистирол предварительно промывают ацетоном и сушат. После чего его пропитывают водным раствором соли RuOHCl3 концентрацией 1.100-111.1 мг/л. Затем суспензию пропитанного сверхсшитого полистирола сушат до постоянной массы и промывают модифицирующим раствором карбоната натрия. После каждой обработки раствором проводят промывку дистиллированной водой до нейтральной рН среды и высушивают до постоянной массы.

В нагретый реактор через загрузочный штуцер вносили подготовленный катализатор рутенийсодержащего сверхсшитого полистирола, затем вводили раствор D-глюкозы с концентрацией 28-2800 ммоль/л. Окисление проводили при барботировании чистым кислородом и контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании и подаче эквимолярного количества подщелачивающего агента NaHCO3.

Пример 1

При изготовлении катализатора носитель - сверхсшитый полистирол предварительно промывают ацетоном и сушат. После чего его пропитывают водным раствором соли RuOHCl3 концентрацией 1.100 мг/л. Затем суспензию пропитанного сверхсшитого полистирола сушат до постоянной массы и промывают модифицирующим раствором Na2CO3 концентрацией 4.4 мг/л. После каждой обработки раствором проводят промывку дистиллированной водой до нейтральной pH среды и высушивают до постоянной массы.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 0.05%, затем вводили 25 мл раствора D-глюкозы с концентрацией 28 ммоль/л. Барботирование химически чистым кислородом осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче эквимолярного количества подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 96.7% (табл., п.1).

Пример 2

Катализатор готовили аналогично примеру 1, за исключением того, что для пропитки подготовленного соответствующим образом сверхсшитого полистирола применяли соль рутения RuOHCl3 концентрацией 22.1 мг/л, а модифицирующий раствор Na2CO3 с концентрацией 85.5 мг/л.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 1%, затем вводили 25 мл раствора D-глюкозы с концентрацией 30 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 98.5% (табл., п.2).

Пример 3

Катализатор готовили аналогично примеру 1, за исключением того, что для пропитки подготовленного соответствующим образом сверхсшитого полистирола применяли соль рутения RuOHCl3 концентрацией 66.4 мг/л, а модифицирующий раствор Na2CO3 с концентрацией 264.4 мг/л.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 3%, затем вводили 25 мл раствора D-глюкозы с концентрацией 50 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 98.2% (табл., п.3).

Пример 4

Катализатор готовили аналогично примеру 3.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 3%, затем вводили 25 мл раствора D-глюкозы с концентрацией 50 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 98.2%. Катализатор показал высокую активность и стабильность в течение 5 рабочих циклов (табл., п.4).

Пример 5

Катализатор готовили аналогично примеру 3.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 3%, затем вводили 25 мл раствора D-глюкозы с концентрацией 50 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 99.4%. Катализатор показал высокую активность и стабильность в течение 10 рабочих циклов (табл., п.5).

Пример 6

Катализатор готовили аналогично примеру 3.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 3%, затем вводили 25 мл раствора D-глюкозы с концентрацией 30 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 99.1%. Катализатор показал высокую активность и стабильность в течение 15 рабочих циклов (табл., п.6).

Пример 7

Катализатор готовили аналогично примеру 1, за исключением того, что для пропитки подготовленного соответствующим образом сверхсшитого полистирола применяли соль рутения RuOHCl3 концентрацией 111.1 мг/л, а модифицирующий раствор Na2CO3 с концентрацией 444.4 мг/л.

В нагретый до 70°C реактор через загрузочный штуцер вносили 1 г катализатора, при этом концентрация активного Me составляла 5%, затем вводили 25 мл раствора D-глюкозы с концентрацией 2800 ммоль/л. Барботирование осуществляли при скорости подачи кислорода 15 мл/с, контролировали автоматическим ротаметром. Процесс окисления проводили при непрерывном перемешивании (частота перемешивания - 600 об/мин) и подаче подщелачивающего агента NaHCO3. Время окисления 120 минут. Выход D-глюконовой кислоты составил 93.8% (табл., п.7).

На основании примеров и таблицы можно сделать следующие выводы: проведение селективного окисления D-глюкозы при атмосферном давлении обеспечивает высокую технологичность и экономичность процесса, а применение нанодисперсно распределенных частиц рутения в матрице сверхсшитого полистирола в качестве катализатора приводит к высокой селективности процесса окисления D-глюкозы и стабильной работе каталитической системы. Это подтверждает, что разработанный способ окисления D-глюкозы с использованием нового полимерного наноструктурированного катализатора, обеспечивающего высокую технологичность, эффективность и стабильность процесса селективного окисления D-глюкозы. Результатом окисления является натриевая соль D-глюконовой кислоты с высокой степенью чистоты. Способ обеспечивает высокую степень конверсии D-глюкозы и селективность процесса ее окисления, а катализатор может быть повторно использован до 15 рабочих циклов.

Примеры применения катализатора

№ п/п Количество активного металла Ru, % Количество рабочих циклов для гетерогенного катализатора Выход D-глюконовой кислоты, %
1 0.05 1 96.7
2 1.00 1 98.5
3 3.00 1 98.2
4 3.00 5 98.2
5 3.00 10 99.4
6 3.00 15 99.1
7 5.00 1 93.8

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
10.04.2019
№219.017.0a23

Состав сырьевой смеси для изготовления неавтоклавного газобетона

Изобретение относится к производству строительных материалов и изделий из ячеистого бетона, поризованного газом, и может быть использовано при изготовлении изделий, применяемых для строительства и теплоизоляции зданий. Состав сырьевой смеси для изготовления неавтоклавного газобетона включает,...
Тип: Изобретение
Номер охранного документа: 0002460708
Дата охранного документа: 10.09.2012
Показаны записи 11-20 из 28.
13.01.2017
№217.015.8286

Способ получения алкиловых эфиров жирных кислот

Изобретение относится к способу получения алкиловых эфиров жирных кислот (АЭЖК) и может быть использовано в нефтехимической, топливной и других отраслях промышленности. Способ получения алкиловых эфиров жирных кислот осуществляют путем проведения реакции переэтерификации растительного масла с...
Тип: Изобретение
Номер охранного документа: 0002601741
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b4aa

Способ получения 2-метил-1,4-нафтохинона

Изобретение относится к способу получения 2-метил-1,4-нафтохинона, обладающего антигеморрагическими свойствами. Способ включает введение в реакционную емкость 2-метилнафталина, уксусной кислоты и 1% золотого катализатора на основе сверхсшитого полистирола марки MN270, обработанного прекурсором,...
Тип: Изобретение
Номер охранного документа: 0002614153
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.bf53

Способ утилизации полимерных отходов методом низкотемпературного каталитического пиролиза

Изобретение относится к области переработки полимерных отходов. Осуществляют способ утилизации полимерных отходов методом низкотемпературного каталитического пиролиза, при этом осуществляют термическую переработку полимерных отходов в шнековом реакторе без доступа кислорода в присутствии...
Тип: Изобретение
Номер охранного документа: 0002617213
Дата охранного документа: 24.04.2017
26.08.2017
№217.015.e680

Гетерогенный катализатор жидкофазного окисления органических соединений

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения...
Тип: Изобретение
Номер охранного документа: 0002626964
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e72f

Способ получения полимерсодержащего катализатора реакции сузуки

Изобретение относится к способам получения катализаторов и предназначено для получения полимерсодержащего катализатора реакции Сузуки на основе наночастиц палладия, импрегнированных в матрицу сверхсшитого полистирола методом пропитки по влагоемкости (импрегнации). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002627265
Дата охранного документа: 04.08.2017
19.01.2018
№218.016.0ba9

Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья

Изобретение относится к нефтехимической промышленности, а именно к области производства гетерогенных катализаторов процесса переработки нефтесодержащих отходов и тяжелых нефтяных остатков (мазута, гудрона, смолисто-асфальтеновой фракции нефти, битума, тяжелой нефти), содержащих цеолит, и может...
Тип: Изобретение
Номер охранного документа: 0002632467
Дата охранного документа: 05.10.2017
04.04.2018
№218.016.310b

Способ переработки углеродсодержащих отходов растительного происхождения

Изобретение относится к области переработки углеродсодержащих отходов растительного происхождения и может применяться для генерации электрической и тепловой энергии и получения углеродных сорбентов. Способ переработки углеродсодержащих отходов растительного происхождения включает подачу сырья в...
Тип: Изобретение
Номер охранного документа: 0002644895
Дата охранного документа: 14.02.2018
29.08.2018
№218.016.8062

Способ получения меланиновых веществ из лузги подсолнечника

Изобретение относится к фармацевтической промышленности, а именно к способу получения меланиновых веществ, получаемых из отходов маслоэкстракционного производства - лузги подсолнечника. Способ получения меланиновых веществ из лузги подсолнечника, включающий измельчение лузги подсолнечника,...
Тип: Изобретение
Номер охранного документа: 0002665166
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8127

Способ получения крахмала из растительного сырья

Изобретение относится к пищевой промышленности. Способ получения крахмала из растительного сырья включает измельчение растительного сырья, смешивание крахмалосодержащего сырья с водой при перемешивании реакционной среды, отделение белковых фракций раствором 0,5 н. едкого натра при рН 8,5,...
Тип: Изобретение
Номер охранного документа: 0002665080
Дата охранного документа: 28.08.2018
11.10.2018
№218.016.90da

Катализатор жидкофазного гидрирования глюкозы и способ его получения

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного гидрирования глюкозы в сорбит, и может быть применено на предприятиях пищевой, фармацевтической и энергетической промышленности для получения пищевых...
Тип: Изобретение
Номер охранного документа: 0002668809
Дата охранного документа: 08.10.2018
+ добавить свой РИД