×
09.06.2019
219.017.7de4

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу электролитического производства алюминия из глиноземсодержащего фторидного расплава. Способ осуществляют с использованием анодов, содержащих двухфазные металлические сплавы на основе меди и железа, в том числе легированные небольшими количествами никеля, состоящих из обогащенной по железу реакционноспособной фазы и обогащенной по меди сплошной инертной фазы и содержащих от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы. Обеспечивается возможность существенно снизить скорости коррозии анодов в глиноземсодержащих фторидных расплавах с рабочей температурой менее 950°С в условиях анодной поляризации, а также обеспечить получение алюминия с низким содержанием металлов - компонентов анода. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.

В последние десятилетия интенсивно ведутся работы по созданию малорасходуемых («несгораемых» или «инертных») анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия. В результате замены ожидаются снижение затрат на производство алюминия, большая компактность конструкции технологического аппарата (электролизера) с меньшими тепловыми потерями, повышение экологической безопасности производства. Основное внимание уделяется металлическим сплавам, как более технологичным материалам [1, 2] по сравнению с керамическими и керметными материалами. Первоначально работы в этом направлении были ориентированы на сплавы с высоким содержанием никеля [3-5]. Эти материалы планировалось использовать в расплавах, традиционно применяемых в промышленном производстве алюминия электролизом (криолитовое отношение КО=2.2-3.0, Т=950-1000°С). Здесь и далее криолитовое отношение, КО=[NaF]/[AlF3], представляет собой отношение молярных концентраций фторида натрия и фторида алюминия в расплаве (условно такие расплавы называют высокотемпературными). В дальнейшем было показано, что путем снижения температуры электролита (при одновременном уменьшении КО) удается добиться существенного снижения скорости коррозии ряда металлов (типичных компонентов сплавов) в расплаве при анодной поляризации [2]. В то же время никельсодержащие сплавы демонстрируют существенное ухудшение стабильности при снижении КО расплава из-за преимущественного образования на поверхности анода плохопроводящих слоев фторида никеля [6]. Поэтому начали активно исследоваться сплавы на основе меди с пониженным содержанием никеля [2, 7-14]. Снижение КО и рабочей температуры приводит к смещению равновесий между образующимися на поверхности анода твердыми продуктами окисления и растворенными комплексами металлов в расплаве, что сопровождается образованием в некоторых условиях плохопроводящих слоев на поверхности анода и увеличением скорости его коррозии. Таким образом, при снижении температуры электролиза и соответствующем изменении состава электролита требуется определение составов металлических сплавов, на поверхности которых не образуются непроводящие фазы при анодной поляризации.

Впервые сплавы на основе меди/железа/никеля в качестве материала для малорасходуемых анодов, эксплуатируемых в расплавах с высоким содержанием фторида алюминия (с низким КО и температурой плавления), были предложены в [7]. В качестве оптимального материала предлагался высокопористый (плотностью 60-70% от теоретической) анод из сплава, содержащего от 25 до 70 мас.% Cu, от 15 до 60 мас.% Ni и 1 до 30 мас.% Fe. При этом анод изготавливается методами порошковой металлургии и эксплуатируется в расплаве, содержащем 42-48 мол.% AlF3. В дальнейшем работы в этом направлении активно развивались [8-14].

Прототипом настоящего изобретения является патент [14], в котором были достигнуты наилучшие результаты по деградационной стойкости таких металлических сплавов. В данном патенте предложено использовать в качестве материала для малорасходуемого анода сплавы, содержащие от 10 до 70 мас.% Cu, от 15 до 60 мас.% Ni, остальное железо. В [14] приводится также уточненный интервал составов: от 20 до 50 мас.% Cu, от 20 до 40 мас.% Ni и от 20 до 40 мас.% Fe. Поскольку все такие сплавы являются двухфазными, так как при их кристаллизации из металлического расплава фаза, богатая железом, формируется в виде дендритов, в пространстве между которыми затем кристаллизуется вторая фаза, богатая медью, то для обеспечения наилучшей деградационной стойкости в прототипе предложено подвергать отливки специальной термической обработке для получения метастабильного однофазного состояния. Электролиз предлагается проводить при температуре не выше 900°С в криолит-глиноземных расплавах с температурой ликвидуса 715-860°С, путем пропускания постоянного тока между катодами и анодами.

Исследования деградационного поведения сплавов системы медь/железо/никель в расплавах различного состава показали, что составы, предложенные в [14], не являются оптимальными: в них присутствует значительное количество никеля, что во многих случаях приводит к образованию блокирующих слоев непроводящего фторида никеля и быстрому разрушению анода. Кроме того, сплавы, подвергнутые специальной термической обработке для получения метастабильного однофазного состояния, менее стабильны в условиях электрохимической поляризации по сравнению с двухфазными сплавами того же элементного состава.

Существенным недостатком прототипа является значительная скорость коррозии материала анода, делающая невозможным использование таких составов в промышленности из-за слишком высокого уровня загрязнения алюминия компонентами анода. Концентрация никеля, меди и железа в получаемом катодном алюминии регулируется ГОСТ 11069-2001. В нем в частности указано, что содержание меди и никеля не должно превышать 0.05 и 0.03% соответственно, а железа 0.35% для алюминия технической чистоты.

Задачей настоящего изобретения является повышение коррозионной стойкости инертных анодов на основе сплавов системы Cu-Fe-Ni по сравнению со сплавами, составы которых предложены в патенте [14].

Решение поставленной задачи достигается тем, что в способе электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере при температуре менее 950°С путем пропускания постоянного тока между катодами и анодами согласно заявляемому изобретению используют аноды, изготовленные из двухфазного сплава Cu-Fe-Ni, состоящего из обогащенной по железу реакционноспособной фазы, формирующейся в виде дендритов, и обогащенной по меди сплошной инертной фазы, и содержащие от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля.

Способ могут дополнять следующие существенные признаки.

В способе могут быть использованы аноды, в которых содержание железа в двухфазном сплаве Cu-Fe-Ni превышает содержание никеля не менее чем в два раза.

В способе могут быть использованы аноды, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.

Следовательно, решение поставленной задачи достигается в первую очередь снижением общего содержания никеля в сплаве до значений, не превышающих 15 мас.%, при указанном в формуле изобретения содержании меди и железа. С целью снижения риска образования оксидов и фторидов никеля содержание железа в сплаве должно, по крайней мере, вдвое превышать содержание никеля.

Также было доказано, что двухфазные сплавы демонстрируют более высокую стабильность в ходе электрохимической поляризации по сравнению с однофазными сплавами того же элементного состава. При этом одна из фаз, богатая железом, в составе двухфазного сплава растворяется и окисляется значительно быстрее второй фазы и поэтому называется реакционноспособной фазой. Соответственно, вторая фаза, обогащенная по меди, называется инертной фазой. Наличие реакционноспособной фазы и непрерывность сплошной инертной фазы оказывают существенное влияние на механизм и скорость коррозии анода.

Только при наличии реакционноспособной фазы и непрерывности сплошной инертной фазы обеспечивается равномерное окисление сплава и сдерживается его механическое разрушение после окисления и растворения реакционноспособной фазы в поверхностном слое анода. Содержание обеих фаз в системе Cu-Fe-Ni при постоянном содержании Ni в количестве до 15 мас.% можно изменять в широких пределах.

Количество фаз в сплаве однозначно связано с его элементным составом и может быть легко определено с использованием соответствующей трехкомпонентной фазовой диаграммы. Оптимальный элементный состав используемых анодов: от 30 до 77 мас.% Cu, до 15 мас.% Ni и от 23 до 65 мас.% Fe, - однозначно определяет оптимальные соотношения фаз. Содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni может составлять 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.

Таким образом, поставленная задача решается при одновременной оптимизации состава и ключевых параметров микроструктуры материала анода - наличия реакционноспособной фазы и непрерывности сплошной инертной фазы.

Достигаемый при использовании изобретения технический результат обеспечивается благодаря повышению коррозионной стойкости анодов, используемых в процессе электролиза глиноземсодержащих фторидных расплавов при температуре менее 950°С, что гарантирует снижение загрязнения получаемого алюминия компонентами анода.

Для экспериментальной проверки заявляемых материалов были подготовлены образцы анодов различного состава (см. в таблице), и проведено их испытание в условиях анодной поляризации в криолит-глиноземных расплавах различного состава. Образцы металлических анодов Cu-Fe с добавкой Ni и без нее различного состава изготавливались путем плавления исходных порошков чистых металлов в печи сопротивления в инертной атмосфере. Расплав выдерживали в течение 10-30 минут при температуре 1600-1650°С для усреднения состава, затем отливали в форму. Получаемые цилиндрические аноды диаметром от 8 до 15 мм и высотой от 30 до 150 мм приваривались путем электродуговой сварки к токоподводу. Электролиз проводили при анодной плотности тока около 0.3-0.7 А/см2 в графитовом тигле, содержащем 400 граммов расплава. Испытания проводились при температурах 760 и 920°С в расплавах с КО 1.3 и 1.86 соответственно и содержанием глинозема 2%. Расплав готовился из смеси реагентов Na3AlF6, AlF3, Al2O3 квалификации не ниже «ч». В качестве катодов использовался графит. В ходе электролиза проводилась периодическая загрузка в расплав глинозема с интервалом 30 мин. Продолжительность испытаний составляла не менее 2-х часов. Глубина погружения электродов в расплав, как правило, составляла 10-15 мм (рабочая площадь анода - около 3-4 см2).

Для количественного сопоставления скорости коррозии двухфазных сплавов, демонстрирующих в ходе электролиза образование протяженного пористого слоя за счет селективного окисления и растворения реакционноспособной фазы, использовалась величина интегральной скорости коррозии, которая характеризует долю тока (в процентах), расходуемую на окисление металлической основы анода в ходе электролиза. Интегральная скорость коррозии рассчитывалась на основании электронно-микроскопических данных, полученных с поперечных шлифов образцов после лабораторных испытаний. При этом расчет производили исходя не только из изменения геометрических размеров анода, но и с учетом объема пор, образовавшихся в поверхностном слое сплава. Таким образом, показатель интегральной скорости коррозии анодов характеризует величину среднего остаточного тока коррозии для заданной общей плотности тока в ходе электролиза. Так как все эксперименты проводились в идентичных условиях, то рассчитанная интегральная скорость коррозии может быть использована для прямого сопоставления наблюдаемой скорости коррозии материалов с различной микроструктурой и протяженностью пористых слоев.

Из данных таблицы следует, что образец анода по прототипу (№1) демонстрирует высокую скорость коррозии. В то же время переход от однофазного сплава к двухфазному и снижение содержания никеля в составе сплава приводят к быстрому уменьшению общей скорости окисления материала, что связано со снижением вероятности образования фторидов никеля. Тем не менее, небольшие количества никеля в сплаве, приводящие к образованию в оксидном слое феррита никеля, позитивно сказываются на деградационной устойчивости материала. Так, минимальную скорость коррозии демонстрирует сплав с содержанием никеля около 8 мас.%. Высокую стабильность также демонстрируют двухкомпонентные сплавы Cu-Fe, у которых содержание реакционноспособной фазы близко к 50-60%. Наилучшую устойчивость к окислению демонстрируют сплавы №6 и №11. Для таких материалов достигается минимальное поступление в расплав (а тем самым и в алюминий) компонентов анода.

Как показывают результаты лабораторного тестирования, предлагаемые материалы оптимизированного состава и микроструктуры обладают высокой стабильностью в глиноземсодержащих фторидных расплавах в условиях анодной поляризации. Поэтому аноды из этих материалов имеют низкую скорость коррозии и позволяют получать алюминий с низким содержанием компонентов сплава.

Источник поступления информации: Роспатент

Показаны записи 111-120 из 230.
25.08.2017
№217.015.d04d

Способ футеровки катода электролизера для получения первичного алюминия

Изобретение относится к способу футеровки катодных устройства электролизеров для получения алюминия. Способ включает засыпку и выравнивание теплоизоляционного слоя в кожух катодного устройства, засыпку, выравнивание и уплотнение огнеупорного слоя, установку подовых и бортовых блоков с...
Тип: Изобретение
Номер охранного документа: 0002621197
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d052

Способ получения сплава на основе алюминия и устройство для осуществления способа

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения сплава алюминий-скандий в условиях промышленного производства. Способ получения сплава на основе алюминия, содержащего 1-3 мас.% скандия, включает приготовление и расплавление смеси, содержащей...
Тип: Изобретение
Номер охранного документа: 0002621207
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d0d4

Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия

Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия. Способ мокрой очистки отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002621334
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc92

Анодное устройство алюминиевого электролизера

Изобретение относится к анодному устройству алюминиевого электролизера с обожженными анодами и может быть применено с целью оптимизации ширины корпуса электролиза при поперечном расположении электролизеров. Анодное устройство содержит балку-коллектор с вертикальными опорными стойками,...
Тип: Изобретение
Номер охранного документа: 0002624275
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd34

Устройство для сбора и эвакуации газов из алюминиевого электролизера

Изобретение относится к устройству для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами для получения алюминия. Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами через газосборные окна посредством газоотводящих...
Тип: Изобретение
Номер охранного документа: 0002624559
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e36f

Устройство для дозированной подачи сырья в алюминиевый электролизер

Изобретение относится к устройству для дозированной подачи сырья в алюминиевый электролизер. Устройство содержит бункер дозируемого материала, камеру дозирования с впускным и выпускным отверстиями и фланцем, шток с приводом, установленный в защитном кожухе с кольцевым ребром, которое соединено...
Тип: Изобретение
Номер охранного документа: 0002626261
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e89d

Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция,...
Тип: Изобретение
Номер охранного документа: 0002627431
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e8a6

Способ получения карбида кремния

Изобретение относится к неорганической химии и касается технологии получения карбида кремния восстановлением в электрических печах сопротивления. Способ включает дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение...
Тип: Изобретение
Номер охранного документа: 0002627428
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f6d7

Способ совмещенного непрерывного литья, прокатки и прессования металлической заготовки и устройство для его реализации

Изобретение относится к металлургии и может быть использовано для получения профилей, катанки, секторных жил. Устройство содержит роторный кристаллизатор 3, формирующий непрерывную литую заготовку 4, валок 7 с ручьем и валок 8 с выступом, образующие рабочий калибр, матрицу 9 на выходе из...
Тип: Изобретение
Номер охранного документа: 0002639203
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f72e

Способ литья изделий из алюминиевых сплавов

Изобретение относится к области металлургии алюминия, в частности к технологии внепечного модифицирования, и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества для изготовления изделий авиакосмической и автомобильной промышленности. Способ литья изделий...
Тип: Изобретение
Номер охранного документа: 0002639105
Дата охранного документа: 19.12.2017
Показаны записи 41-48 из 48.
09.06.2019
№219.017.7cb8

Ошиновка алюминиевых электролизеров при продольном расположении

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия в электролизерах, размещенных в корпусе продольно в два ряда и соединенных друг с другом в последовательную электрическую цепь. Ошиновка последовательно соединенных электролизеров содержит два...
Тип: Изобретение
Номер охранного документа: 0002328556
Дата охранного документа: 10.07.2008
09.06.2019
№219.017.7cc2

Способ изготовления катода вертикального электролизера для производства алюминия

Изобретение относится к производству алюминия электролизом оксида алюминия в расплаве электролита. Для формования катода используют смесь, содержащую порошок диборида титана, углеродсодержащий наполнитель, углеродсодержащее связующее и борсодержащую добавку, в частности оксид бора или борную...
Тип: Изобретение
Номер охранного документа: 0002418888
Дата охранного документа: 20.05.2011
24.08.2019
№219.017.c39f

Перфорированный металлический инертный анод для получения алюминия электролизом расплава

Изобретение относится к перфорированному аноду для электролитического получения алюминия электролизом фторидных расплавов. Анод выполнен в виде перфорированной структуры, образованной продольными и поперечными анодными элементами, которые пересекаются друг с другом и ограничены боковыми...
Тип: Изобретение
Номер охранного документа: 0002698162
Дата охранного документа: 22.08.2019
13.12.2019
№219.017.eceb

Литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для получения фасонных отливок гравитационным литьем в кокиль, литьем под давлением, кристаллизацией под давлением, используемых в автомобилестроении, для корпусов электронных устройств, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002708729
Дата охранного документа: 11.12.2019
25.03.2020
№220.018.0f5a

Способ экспресс-определения криолитового отношения и концентрации фторида калия в электролите при получении алюминия

Изобретение относится к способу определения состава электролита, в частности криолитового отношения (КО) и концентрации фторида калия (KF) в электролите на основе термических измерений с целью управления процессом электролиза алюминия. Способ включает отбор и извлечение, по меньшей мере, трех...
Тип: Изобретение
Номер охранного документа: 0002717442
Дата охранного документа: 23.03.2020
17.04.2020
№220.018.159b

Соединение для электродного материала металл-ионных аккумуляторов, электродный материал на его основе, электрод и аккумулятор на основе электродного материала

Изобретение относится к электротехнике, а именно к разработке нового типа электродного материала на основе пирофосфатов переходных и щелочных металлов для металл-ионных аккумуляторов для использования во вторичных источниках тока. В качестве электродного материала для металл-ионных...
Тип: Изобретение
Номер охранного документа: 0002718878
Дата охранного документа: 15.04.2020
26.04.2020
№220.018.1a0a

Полимерный конструкционный материал и способ его изготовления

Изобретение относится к слоистым изделиям, где в качестве пропитывающего, связующего вещества использована эпоксикремнийорганическая смола, а в качестве наполнителя - арамидная ткань, и способам их изготовления. Полимерный конструкционный материал содержит эпоксидное связующее, состоящее из...
Тип: Изобретение
Номер охранного документа: 0002720119
Дата охранного документа: 24.04.2020
17.06.2023
№223.018.7e8d

Катодное устройство алюминиевого электролизера

Изобретение относится к металлургии алюминия электролизом расплавленных солей, в частности к катодному устройству электролизера, и касается конструкции верхнего пояса продольных и торцевых стенок катодного кожуха. Катодное устройство электролизера для производства алюминия содержит...
Тип: Изобретение
Номер охранного документа: 0002770602
Дата охранного документа: 18.04.2022
+ добавить свой РИД