×
09.06.2019
219.017.76d6

Результат интеллектуальной деятельности: ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области деформируемых термически неупрочняемых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформированных полуфабрикатов в различных областях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности и др. Сплав содержит следующие компоненты, мас.%: магний - 5,5-6,5, скандий - 0,10-0,20, марганец - 0,5-1,0, хром - 0,10-0,25, цирконий - 0,05-0,20, титан - 0,02-0,15, цинк - 0,1-1,0, бор - 0,003-0,015, бериллий - 0,0002-0,005, алюминий - остальное. Техническим результатом изобретения является получение сплава, обладающего высокой технологической пластичностью и имеющего характеристики прочности на уровне сплава прототипа. 2 табл.

Предложенное изобретение относится к области металлургии сплавов, в частности деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в качестве конструкционного материала в виде деформированных полуфабрикатов в различных отраслях техники: судостроении, авиакосмической и нефтегазодобывающей промышленности, транспортном машиностроении и др.

Существует ряд деформируемых термически неупрочняемых алюминиевых сплавов средней прочности, легированных магнием, марганцем, цирконием и другими переходными металлами в количестве, обеспечивающем оптимальное сочетание прочностных и пластических свойств. Самым распространенным из этой группы сплавов является сплав марки 1561, химический состав которого регламентирован ОСТ 1.92014-90.

В настоящее время разработаны более прочные термически неупрочняемые сплавы системы алюминий-магний-скандий.

Наиболее близким по технической сущности и принятым нами за прототип является термически неупрочняемый Al-Mg-Sc сплав, состав которого раскрыт в патенте РФ №2081934. Данный сплав содержит следующие компоненты в мас.%:

магний5,3-6,5
марганец0,2-0,7
цирконий0,02-0,15
бериллий0,0001-0,005
скандий0,17-0,35
по крайней мере один металл из группы,
содержащей титан и хром0,01-0,25
алюминийостальное

Недостатком этого сплава является его невысокая технологическая пластичность, препятствующая применению сложных схем напряженно-деформированного состояния при пластической обработке (например, при ковке, штамповке и т.д.).

Техническим результатом предложенного изобретения является создание сплава, обладающего высокой технологической пластичностью с характеристиками прочности на уровне сплава прототипа, который достигается тем, что в сплав на основе алюминия, содержащий магний, скандий, марганец, хром, цирконий, титан, бериллий, дополнительно введены цинк и бор, понижено содержание скандия, ограничено минимальное суммарное содержание скандия, марганца и хрома до 0,85% и компоненты взяты в следующих соотношениях, мас.%:

магний5,5-6,5
скандий0,10-0,20
марганец0,5-1,0
хром0,10-0,25
цирконий0,05-0,20
титан0,02-0,15
цинк0,1-1,0
бор0,003-0,015
бериллий0,0002-0,005
алюминийостальное

Магний и марганец в сплаве являются наиболее эффективными упрочнителями. Марганец также снижает склонность к межкристаллитной коррозии и коррозии под напряжением.

Скандий наиболее эффективный модификатор и легирующий элемент, способствует сохранению нерекристаллизованной структуры, повышает механические свойства алюминиевых сплавов. Однако при повышенном его содержании в многокомпонентных сплавах снижается их технологическая пластичность.

При содержании скандия менее 0,10% прочностные свойства предлагаемого сплава становятся ниже свойств сплава прототипа.

Легирование сплава хромом способствует более гомогенному выделению дисперсных интерметаллидов, повышает прочностные свойства сплава, повышает стойкость против коррозионного растрескивания.

Благодаря тому что марганец и хром кристаллизуются в алюминиевых сплавах по эвтектической и перитектической реакциям соответственно, марганец способствует упрочнению периферийных объемов зерна, а хром - внутренних.

Введение циркония в сплав усиливает влияние скандия, оказывает модифицирующее действие на структуру слитков, измельчает выделения β-фазы, обеспечивает получение нерекристаллизованной структуры деформированных полуфабрикатов, снижает склонность к образованию трещин при сварке, повышает механические свойства сварных соединений.

Бериллий предохраняет металл в процессе плавки от окисления.

Титан является одним из наиболее активных модификаторов алюминиевых сплавов, повышает их прочностные и пластические свойства.

Легирование сплава цинком повышает его технологическую пластичность и прочностные характеристики. Совместное введение цинка и хрома улучшает коррозионную стойкость сплава под напряжением.

При содержании цинка менее 0,1% его влияние малоэффективно.

При содержании цинка более 1,0% снижается технологическая пластичность сплава, вследствие образования интерметаллической Al-Zn-Mg фазы Т.

Бор модифицирует структуру сплава, повышает его технологичность. Введение бора в сплав увеличивает способность сплава к деформированию, что обеспечивает возможность изготовления поковок и штамповок. При совместном введении в сплав бора и титана эффект модифицирования значительно усиливается и повышаются механические свойства сплава.

При содержании бора меньше 0,003% прочность предлагаемого сплава не достигает прочности сплава прототипа.

При содержании бора более 0,015% он не оказывает существенного влияния на структуру и прочностные свойства сплава.

При суммарном содержании скандия, марганца и хрома менее 0-85% прочностные свойства сплава становятся ниже свойств сплава прототипа.

Обеспечение прочности предлагаемого сплава на уровне свойств сплава прототипа достигается при суммарном содержании скандия, марганца и хрома не менее 0,85%.

Уменьшение содержания скандия в предлагаемом сплаве существенно - в 1,5-2,0 раза - снижает его стоимость по сравнению с прототипом.

Пример

Из сплава предлагаемого состава с легированием на нижнем (с учетом суммарного содержания скандия, марганца и хрома не менее 0,85%), среднем, верхнем уровнях и запредельными составами, а также из сплава прототипа (см. табл.1) изготавливали образцы для исследования.

Плавки производились в отражательной электропечи. В качестве шихты использовали алюминий марки А85, магний марки МГ, цинк марки Ц0, лигатуры алюминия со всеми легирующими элементами, входящими в состав сплава.

Методом полунепрерывного литья отливали слитки сечением 60×240 мм. Слитки гомогенизировали при температуре 400±5°С в течение 24 часов. Из слитков механической обработкой изготавливали заготовки для прокатки размером 55×230×350 мм. Заготовки нагревали до температуры 400-420°С и прокатывали на листы толщиной 10 мм. Полученные листы подвергали исследованию.

Прочностные свойства листов определяли при комнатной температуре при испытании стандартных круглых образцов на растяжение.

В качестве характеристик прочности брали предел прочности (σв) и предел текучести (σ0,2).

Деформируем ость металла при горячей обработке (технологическую пластичность) оценивали при температуре 420°С по результатам прокатки клиновых образцов и осадки цилиндрических образцов, вырезанных из слитка. Для оценки деформируемости при прокатке клиновых образцов использовали критерий К=l1/l0×100%, где l0 - полная длина деформированного образца, l1 - длина деформированной части образцов до первой трещины. Для оценки деформируемости при осадке образца брали относительную деформацию ε=(h0-h1)/h0×100%, где h0 - начальная высота образца, h1 - высота образца в момент появления на боковой поверхности первой трещины.

Результаты механических испытаний и данные по деформируемости сплава при температуре горячей пластической обработки (технологическая пластичность) приведены в таблице 2.

Как видно из таблицы 2, предлагаемый сплав обладает более высокой, чем прототип, технологической пластичностью - способностью к деформированию при горячей обработке давлением.

Результаты механических испытаний показывают, что предлагаемый сплав по прочностным характеристикам (σв=411-428 МПа; σ0,2=288-304 МПа), не уступает сплаву-прототипу.

При запредельно пониженном содержании легирующих элементов снижаются прочностные свойства сплава, а при запредельно повышенном их содержании снижается технологическая пластичность сплава.

Технико-экономический эффект от использования изобретения по сравнению с прототипом заключается в повышении выхода годного при горячем деформировании высокопрочных полуфабрикатов, возможности изготовления высокопрочных полуфабрикатов с использованием сложных схем напряженно-деформированного состояния (например, ковкой и штамповкой) и увеличении производительности процесса изготовления полуфабрикатов за счет повышения технологичности сплава при существенном снижении его стоимости.

Таблица 1
Содержание основных компонентов в предлагаемом сплаве и прототипе
Сплав№ составаХимический состав, мас.%
Магний MgСкандий ScМарганец MnХром CrЦирконий ZrТитан TiЦинк ZnБор ВБериллий BeSc+Mn +CrАлюминий Al
Предлагаемый15,50,100,650,100,050,020,10,0030,00020,85Остальное
26,00,150,500,220,110,100,60,0080,00260,87Остальное
36,50,201,00,250,200,151,00,0150,0051,45Остальное
С запредельным содержанием компонентов45,40,090,400,130,040,010,090,0020,00010,62Остальное
56,60,211,100,260,210,161,10,0170,00521,57Остальное
Прототип66,30,230,500,230,080,04--0,001Остальное

Таблица 2
Механические свойства предлагаемого сплава и прототипа
СплавМеханические свойства листов
№ составаПрочностные свойства*Технологическая пластичность, %**
Предел прочности (σв), МПаПредел текучести (σ0,2), МПаПри прокатке, КПри осадке, ε
Предлагаемый14112889276
24202958772
34283048460
С запредельным содержанием компонентов43982749474
54323068262
Прототип64162928162
Примечание:
* средние результаты па основании испытаний 5 образцов;
** средние результаты на основании испытаний 3 образцов.

Деформируемыйтермическинеупрочняемыйсплавнаосновеалюминия,содержащиймагний,скандий,марганец,хром,цирконий,титан,бериллий,отличающийсятем,чтовнегодополнительновведеныцинкиборприследующемсоотношениикомпонентов,мас.%:Магний5,5-6,5Скандий0,10-0,20Марганец0,5-1,0Хром0,10-0,25Цирконий0,05-0,20Титан0,02-0,15Цинк0,1-1,0Бор0,003-0,015Бериллий0,0002-0,005АлюминийОстальноеc0c1211none947присуммарномсодержаниискандия,марганцаихроманеменее0,85%.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 38.
10.11.2014
№216.013.0581

Способ получения нанокаталитического материала

Изобретение относится к технологическим процессам, а именно к способам осуществления химических процессов, в частности к области общего и специального катализа, также к созданию новых материалов с особыми свойствами для осуществления этих процессов. Изобретение может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002532807
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0e9f

Агломерированный флюс 48аф-70

Изобретение может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд (19,0-25,0), синтетический шлак (14,0-18,0), плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002535160
Дата охранного документа: 10.12.2014
10.03.2015
№216.013.2f54

Электролит на водной основе для никелирования изделий из стали, алюминия, титана, меди и их сплавов

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности, машиностроении и судостроении для увеличения коррозионной стойкости, паяемости и износостойкости деталей и узлов элементов систем управления, комбинированных конструкций из титана и алюминия....
Тип: Изобретение
Номер охранного документа: 0002543584
Дата охранного документа: 10.03.2015
20.05.2015
№216.013.4d72

Аустенитная коррозионно-стойкая сталь

Изобретение относится к металлургии, а именно к разработке состава легированной аустенитной коррозионно-стойкой стали для атомных энергетических установок. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,03-0,08, кремний 0,4-0,6, марганец 1,0-1,8, хром 17,5-19, никель...
Тип: Изобретение
Номер охранного документа: 0002551340
Дата охранного документа: 20.05.2015
10.02.2016
№216.014.c52b

Способ химико-термической обработки деталей из сталей мартенситного класса

Изобретение относится к области технологии химико-термической обработки металлических материалов и предназначено для термической обработки деталей пар трения. Способ химико-термической обработки деталей пар трения из стали мартенситного класса включает объемную закалку заготовок из стали и...
Тип: Изобретение
Номер охранного документа: 0002574944
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0499

Наномодифицированный эпоксидный сферопластик

Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала, и может быть использовано в качестве конструкционного материала в...
Тип: Изобретение
Номер охранного документа: 0002587454
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.32f8

Сплав на основе титана

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий...
Тип: Изобретение
Номер охранного документа: 0002582171
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.9da0

Способ дуговой наплавки медно-никелевого сплава с содержанием никеля от 40 до 50% на алюминиево-никелевые бронзы

Изобретение может быть использовано для получения коррозионно-стойкого медно-никелевого покрытия на уплотнительном поле узла затвора арматуры из алюминиево-никелевой бронзы. Проводят дуговую наплавку рабочего слоя из медно-никелевого сплава через промежуточный слой. Промежуточный слой...
Тип: Изобретение
Номер охранного документа: 0002610656
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a220

Способ центробежной отливки тонкостенных труб из жаропрочных сплавов

Изобретение относится к литейному производству и может быть использовано при отливке тонкостенных труб из сложнолегированного жаростойкого жаропрочного сплава 50Х32Н43В5С2Б2, в частности труб диаметром 0,076-0,159 м, толщиной стенки 0,008-0,014 м и длиной 3,0 м. На внутреннюю поверхность формы...
Тип: Изобретение
Номер охранного документа: 0002606824
Дата охранного документа: 10.01.2017
Показаны записи 11-20 из 28.
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.c092

Способ получения бездефектных поковок для длинномерных изделий типа роторов или валов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении поковок для длинномерных изделий типа роторов или валов. Полученный из отлитого кузнечного слитка блок подвергают осадке. Из осаженного блока удаляют центральную дефектную зону путем его прошивки...
Тип: Изобретение
Номер охранного документа: 0002302921
Дата охранного документа: 20.07.2007
11.03.2019
№219.016.d946

Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне

Изобретение относится к сварочному производству, а именно к способам наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне. Способ включает изготовление присадочного материала из смеси порошков и связующего в виде двух паст....
Тип: Изобретение
Номер охранного документа: 0002350441
Дата охранного документа: 27.03.2009
20.03.2019
№219.016.e72e

Трехслойная корпусная конструкция

Изобретение относится к технологии машиностроения и касается изготовления трехслойных конструкций из металлов и композиционных материалов, например из стеклопластика, с гофрированным заполнителем. Трехслойная конструкция имеет два несущих слоя, один из которых выполнен из стеклопластика, и...
Тип: Изобретение
Номер охранного документа: 0002321516
Дата охранного документа: 10.04.2008
29.03.2019
№219.016.ee9f

Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров

Изобретение относится к области металлургии, в частности к производству экономнолегированной хладостойкой стали для сварных труб морских газопроводов с рабочим давлением до 19 МПа, эксплуатируемых при пониженных температурах. Техническим результатом изобретения является обеспечение высокой...
Тип: Изобретение
Номер охранного документа: 0002270873
Дата охранного документа: 27.02.2006
29.04.2019
№219.017.3f46

Агломерированный флюс марки 48аф-55

Изобретение может быть использовано для автоматической сварки низколегированных хладостойких сталей нормальной, повышенной и высокой прочности на обычных режимах, а также форсированных режимах и повышенных скоростях сварки низколегированными проволоками. Флюс содержит, мас.%: электрокорунд...
Тип: Изобретение
Номер охранного документа: 0002295431
Дата охранного документа: 20.03.2007
29.04.2019
№219.017.41af

Способ получения наноструктурированных функционально-градиентных износостойких покрытий

Предлагаемый способ относится к области получения покрытий и создания наноструктурированных материалов с функционально-градиентными свойствами. Способ включает подачу порошковой композиции, по крайней мере, из двух дозаторов в сверхзвуковой поток подогретого газа и нанесение порошковой...
Тип: Изобретение
Номер охранного документа: 0002354749
Дата охранного документа: 10.05.2009
18.05.2019
№219.017.5ad3

Сплав на основе алюминия и изделие, выполненное из этого сплава

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам системы алюминий-магний, используемым для сварных конструкций в судостроении, авиакосмической технике и транспортном машиностроении. Сплав на основе алюминия, используемый для сварных...
Тип: Изобретение
Номер охранного документа: 0002431692
Дата охранного документа: 20.10.2011
20.05.2019
№219.017.5d51

Состав порошковой проволоки для сварки труб категории прочности х90

Изобретение может быть использовано для автоматической и механизированной сварки в среде защитных газов низколегированных трубных сталей категории прочности Х90. Порошковая проволока содержит, мас.%: двуокись титана 4,21-7,32; полевой шпат 0,50-1,50; электрокорунд 0,21-0,71; плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002387527
Дата охранного документа: 27.04.2010
20.05.2019
№219.017.5d5b

Листовая хладостойкая сталь для высоконагруженных конструкций контейнерной техники атомной и термоядерной энергетики

Изобретение относится к области металлургии, а именно к листовой хладостойкой стали, используемой в атомном энергомашиностроении при серийном производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов...
Тип: Изобретение
Номер охранного документа: 0002413782
Дата охранного документа: 10.03.2011
+ добавить свой РИД