×
20.06.2016
217.015.0499

НАНОМОДИФИЦИРОВАННЫЙ ЭПОКСИДНЫЙ СФЕРОПЛАСТИК

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала, и может быть использовано в качестве конструкционного материала в строительной, автомобильной, судостроительной промышленности. Эпоксидный сферопластик содержит эпоксидную композицию, отвердитель и наполнители. В качестве наполнителя выступают стеклосферы и наномодификатор наноразмерный порошок оксида цинка в количестве 5-12 вес. % на массу эпоксидного сферопластика. Изобретение обеспечивает наномодифицированный эпоксидный сферопластик, имеющий улучшенные механические характеристики при нормальных и повышенных температурах с сохранением высокой химической стойкости. 1 табл., 3 пр.
Основные результаты: Наномодифицированный эпоксидный сферопластик, на основе эпоксидной композиции марки 03-18, включающий отвердитель аминного типа ХТ-411 и наполнители - наномодификатор и стеклосферы - полые стеклянные шарики со средним размером 10-15 мкм, отличающийся тем, что в качестве наномодификатора он содержит наноразмерный порошок оксида цинка с размером частиц от 10 до 100 нм, полученный методом буферного окисления, в количестве 5-12 вес. % на массу эпоксидного сферопластика.
Реферат Свернуть Развернуть

Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала. Данные материалы могут применяться как конструкционные, например, при строительстве зданий, изготовлении деталей транспортных средств (например, автомобилей или самолетов), при постройке судов, производстве мебели, а также в ряде других: в электронике, в офисном оборудовании, например, для корпусов компьютеров и в ряде других отраслей.

Полимерные нанокомпозиты, содержащие полимерную матрицу с распределенными в ней одной или несколькими добавками (стеклосферами, неорганическими микрочастицами, неорганическими глинистыми или волоконными материалами) и способы их получения известны достаточно хорошо (см., например, Нанокомпозитные пластмассы: технологии, стратегии, тенденции. Дон Росато, http://www.omnexus.com.). При этом основной целью введения неорганических добавок является целенаправленное улучшение определенных свойств полимеров. Наномодифицированными композитами являются добавки с характерным размером частиц порядка 100 нм (200-250 нанометров для сложных оксидных систем) и менее. В качестве подобных наномодификаторов может быть использован широкий спектр неорганических материалов: глинистые материалы (по типу монтморрилонита), стекла различных составов (натриево-силикатные, боросиликатные и т.д.), тальк, оксиды, в том числе смеси оксидов, смектитная глина, слюда микронного размера и другие.

Хорошо известно [Энциклопедия полимеров. - М.: Советская энциклопедия, 1974, т. 2, с. 344], что наполнители с наибольшей удельной поверхностью, т.е. с минимальным технологически возможным размером частиц, целесообразно использовать для повышения прочности полимерных материалов. Однако при практическом применении таких наполнителей в процессе выбора оптимального материала наполнителя, особенно при модификации низковязких термореактивных олигомеров, следует учитывать два обстоятельства, а именно: во-первых, присущая частицам малых размеров склонность к агломерации, существенно возрастающая с ростом удельной поверхности наполнителей; во-вторых, процесс седиментации частиц. Как правило, процесс седиментации также ускоряется при уменьшении удельной поверхности частиц, а также при повышении плотности наполнителя и снижении вязкости связующего. Отметим, что введение наномодификаторов связано также с рядом технологических проблем, одной из основных является загустевание композиций и снижение их текучести. На практике чаще всего используют наполнители с размером частиц не более 40 мкм, при этом чаще всего он составляет 1-15 мкм. Отметим, что вышеприведенные размеры зачастую относятся к агломератам частиц существенно меньших размеров.

Наполнители по типу зерен (стеклосферы, гранулы и т.д.) обычно применяют для улучшения химической устойчивости полимерных композитов, целенаправленного изменения их оптических характеристик, а также для регулировки коэффициента трения. К зернам, вводимым в матрицу полимера в качестве наполнителя, относят [Энциклопедия полимеров. М.: Советская энциклопедия, 1974, т. 2, с. 351] ряд материалов: полые сферы (микробаллоны), получаемые из стекла, углерода, полимеров и др.; стеклянные чешуйки и гранулы различной формы, гранулированные полимеры и др. Вариации характерных размеров наполнителей-зерен достаточно велики: так, характерные диаметры применяемых полых сфер могут лежать в пределах от 2 до 500 мкм, в то время как линейные размеры гранул могут достигать нескольких миллиметров.

В последние годы все чаще в качестве модификаторов при производстве полимерных материалов используются наноразмерные частицы. Наномодифицированные полимеры изготавливают [см. Нанокомпозитные пластмассы: технологии, стратегии, тенденции. Дон Росато, http://www.onmexus.com] путем введения наполнителей, представляющих собой наноразмерные частицы, в матрицу термореактивных или термопластических полимеров. Отмечается, что свойства наномодифицированных полимеров зачастую существенно лучше, чем у немодифицированных пластиков, в частности, процесс наномодификации в ряде случаев позволил повысить механические характеристики материалов (предел прочности на изгиб и на сжатие), увеличить теплоизоляционные характеристики, повысить температуру возгорания, устойчивость к ультрафиолетовому излучению и ряд других важных параметров.

Известен [Патент РФ №2329285, опубл. 2006.11.10, МПК С09С 3/04] способ получения низкоразмерных наполнителей из природных слоистых минералов для полимерных материалов. Данные материалы предназначены для использования в технологиях производства материалов для машиностроения, а именно, для создания композитов с заданными функциональными характеристиками. Способ получения включает в себя измельчение исходного сырья природного слоистого минерала и термическую обработку измельченных дисперсных частиц.

Термическую обработку проводят введением дисперсных частиц в безокислительный тепловой газовый поток с плотностью 3·106-8·107 Вт/м2 в течение 10-4-10-3 сек. Вышеуказанным потоком, содержащим дисперсные частицы, воздействуют на подложку в виде стального листа, нагретого до температуры 20-100°С. Полученные частицы затем собирают и охлаждают их до температуры 100-120°С. Данное изобретение позволяет получить наполнитель с размерностью частиц не более 10 нм при сравнительно низких энергетических затратах, авторы патента отмечают эффективность данного наполнителя при создании наномодифицированных полимеров.

Следует отметить, что ранее многие нанокомпозитные материалы формировали на основе полимерной матрицы из полипропилена или нейлона; в настоящее время в качестве полимерной основы используют довольно широкий спектр прочих смол, в том числе эпоксидные смолы, полиуретан.

Прототипом предлагаемого изобретения является полимерный нанокомпозит [Патент РФ 2414492, опубл. 20.03.2011, кл. C08L 63/10, В82В 1/00, С09К 21/02]. Данный материал предназначен для использования в производстве строительных и конструкционных материалов. Полимерный нанокомпозит содержит эпоксидную смолу, отвердитель, наполнитель - стеклосферы и наномодификатор. Наномодификатор - оксид алюминия и оксид циркония и/или оксид иттрия, готовят золь-гель синтезом в варианте метода обратного соосаждения (при обратном соосаждении гидроксидов алюминия и циркония и/или иттрия). Композит получают перемешиванием эпоксидной смолы и наномодификатора с последующим введением отвердителя и постепенным введением стеклосфер. Полученный материал обладает хорошей термостойкостью, огнестойкостью и химической стойкостью.

Недостатком данного полимерного нанокомпозита являются невысокие механические свойства, особенно при повышенных температурах.

Техническим результатом предлагаемого изобретения является разработка наномодифицированного эпоксидного сферопластика, обладающего высокими прочностными характеристиками при нормальных и повышенных температурах.

Технический результат достигается тем, что наномодифицированный эпоксидный сферопластик на основе эпоксидной композиции 03-18, отвердителя ХТ-411 и наполнителей - стеклосфер и наномодификатора в соответствии с изобретением в качестве наномодификатора содержит тонкодисперсный порошок оксида цинка в количестве от 5 до 12 вес. % из расчета на массу эпоксидного сферопластика.

Использование наноразмерного порошка оксида цинка вместо наномодификатора на основе диоксида циркония приводит к улучшению ряда прочностных характеристик наномодифицированных эпоксидных сферопластиков. Так, наиболее существенно изменяется предел прочности на изгиб, его увеличение составляет порядка 20% при комнатной температуре, аналогичный положительный эффект наблюдается и при повышенной температуре 50°С. Увеличение предела прочности на растяжение особенно очевидно при повышенной температуре (50°С) - оно составляет 15%, при комнатной температуре этот эффект порядка 8%.

Некоторое улучшение также наблюдается и для такого показателя как тепловой коэффициент линейного расширения - образцы, наномодифицированные оксидом цинка, показывают меньшие значения этого коэффициента в интервале температур от минус 60 до плюс 80°С.

Заявляемый интервал концентраций обусловлен следующими обстоятельствами. При содержании наномодификатора (тонкодисперсного оксида цинка) менее 5 вес. % механические свойства наномодифицированного материала практически не отличаются от свойств немодифицированного эпоксидного сферопластика. Это связано с тем, что количество наномодификатора, введенного в матрицу полимерного материала, недостаточно для изменения структурных характеристик полимерной матрицы. При превышении содержания наномодификатора величины 12 вес. %, происходит «насыщение» материала наномодификатором, выражающееся в том, что дальнейшее увеличение содержания наномодификатора на основе оксида цинка в матрице полимерного материала не только не приводит к улучшению его механических свойств, но для ряда показателей даже ухудшает их. Этот факт, по всей видимости, объясняется тем, что при содержании наноразмерного порошка оксида цинка в 12 вес. % все возможные позиции для контактов наномодификатора с полимерной матрицей заполнены, увеличение содержания наномодификатора не приводит к дальнейшим структурным преобразованиям полимерной матрицы, а, наоборот, начинает приводить к неоднородности материала. Помимо этого наблюдается охрупчивание материала, связанное с повышенным содержанием неорганической фазы в матрице полимера.

Использование методики «буферного окисления» обусловлено следующим. Порошок оксида цинка сильно склонен к агломерации, в связи с этим традиционные подходы получения наноразмерных порошков комбинацией различных переделов помола и отсева на ситовых анализаторах не слишком эффективны. Метод «буферного окисления» не включает в себя стадии отсева и помола и позволяет достаточно эффективно получать наноразмерный порошок цинка с размерами частиц от 10 до 100 нм. В описании примеров изготовления наномодифицированного эпоксидного сферопластика используются следующие материалы:

- в качестве полимерной матрицы применена эпоксидная композиция 03-18

ТУ 2257-079-07516250-2012, представляющая собой смесь эпоксидно-диановой смолы и Лапроксида, получаемую перемешиванием при температуре 60-80°C с вакуумированием; (в качестве других эпоксидных композиций можно рассматривать эпоксидные композиции ХТ-116, ХТ-118 производства фирмы ЗАО «ХИМЭКС Лимитед»)

- в качестве наполнителей:

наномодификатор - тонкодисперсный порошок оксида цинка;

стеклосферы марки МСВП А9 (ТУ6-48-91-92), могут быть использованы и другие аналогичные марки (мелкие полые стеклянные шарики со средним размером 10-15 мкм);

- для отверждения могут быть использованы отвердители аминного типа - (ХТ-411 ТУ 2434-078-075-16250-2012), являющиеся смесью тетраметилдипропилентриамина с полиоксипропиленаминами.

Материал изготавливают следующим образом: в отвешенное количество эпоксидной композиции при тщательном перемешивании вводят порошок наномодификатора, приготовленного методом «буферного окисления», введение наномодификатора производят при ультразвуковой обработке для предотвращения агломерации наноразмерных частиц. Затем в полученную смесь добавляют отвердитель и, продолжая перемешивание, вводят заданное количество стеклосфер.

Для равномерного распределения наномодификатора в объеме эпоксидного сферопластика наноразмерный порошок оксида цинка вводят в эпоксидную композицию при постоянном перемешивании, помимо этого для предотвращения агломерации частиц процесс введения наномодификатора проводят при помещении сосуда с эпоксидной композицией в ультразвуковую баню. Полученную смесь тщательно перемешивают, после чего в полученную относительно однородную систему добавляют отвердитель и, проводя тщательное перемешивание, вводят стеклосферы. Смесь перемешивают на воздухе до образования визуально однородной массы; дальнейшее перемешивание продолжают в вакуумном смесителе для удаления пузырьков воздуха, образовавшихся на предыдущих этапах приготовления.

Для изготовления образцов материала приготовленный состав заливают в формы, обработанные антиадгезивом. Термообработку образцов проводят через 1 сутки в условиях отсутствия градиента температуры при 80°С в течение 7 часов.

Пример 1.

1. Приготовление наномодификатора методом «буферного окисления». Исходным материалом для получения наноразмерных частиц оксида цинка является металлический цинковый порошок с размером частиц менее 40 мкм. Для получения такого порошка используется порошок металлического цинка квалификации «ч.д.а.», просеянный на сите для отбора фракции с размером частиц менее 40 мкм. В установке кипящего слоя, изготовленной из кварца или огнеупорного стекла, в атмосфере осушенного аргона левитирующие металлические частицы разогреваются до температуры 400-405°С, скорость нагрева при этом не превышает 100°С в минуту. После разогрева частиц в реакционную среду подается избыток кислорода, также разогретого до 400°С, в результате чего происходит взрывное окисление частиц металлического цинка. Реакция взрывного окисления протекает с большим выделением тепла, при этом наблюдается зеленое свечение пламени окисляющегося цинка. С началом реакции окисления (сразу же после подачи избытка кислорода) нагрев реакционной смеси прекращают, а с окончанием реакции, характерным признаком которого является отсутствие зеленого свечения окисляющегося цинка, прекращают подачу кислорода. Регулируя скорость потоков газа и соотношение цинка и кислорода в установке, можно получать наноразмерные частицы с характерными линейными размерами в пределах от 10 до 100 нм. После прекращения подачи кислорода реакционный сосуд остывает естественным образом и из него извлекается продукт.

2. Приготовление эпоксидных сферопластиков, модифицированных наночастицами.

Полная загрузка вакуумного смесителя включает: 208,2 г эпоксидной композиции 03-18; 101,4 г отвердителя марки ХТ-411; 62,0 г стеклосфер марки МСВП и 18,6 г наномодификатора - тонкодисперного оксида цинка, что составляет 5 вес. % от массы эпоксидного сферопластика.

Для равномерного распределения наномодификатора в объеме эпоксидного сферопластика в отвешенное количество эпоксидной композиции вводят порошок наномодификатора и тщательно перемешивают. Введение наномодификатора в эпоксидную композицию производится при ультразвуковом воздействии в ультразвуковой бане для предотвращения агломерации наноразмерных частиц. Затем в полученную эпоксидную композицию с однородно распределенными частицами наномодификатора - оксида цинка, добавляют отвердитель марки XT-411 и тщательно перемешивают с постепенным введением стеклосфер.

Полученную таким образом смесь продолжают перемешивать на воздухе до образования визуально однородной среды. Дальнейшее перемешивание продолжают в вакуумном смесителе для удаления пузырьков воздуха, образовавшихся на предыдущих этапах приготовления. Для изготовления образцов сферопластика приготовленный состав заливают в формы.

Термообработку образцов проводят через 1 сутки в условиях отсутствия градиента температуры при 80°С в течение 7 часов.

Пример 2.

1. Приготовление наномодификатора - аналогично примеру 1.

2. Приготовление эпоксидных сферопластиков, модифицированных наночастицами. Полная загрузка вакуумного смесителя включает: 208,2 г эпоксидной композиции; 101,4 г отвердителя марки ХТ-411; 62,0 г стеклосфер марки МСВП и 25,9 г наномодификатора - тонкодисперного оксида цинка, что составляет 7 вес. % от массы матрицы эпоксидного сферопластика.

Пример 3.

1. Приготовление наномодификатора - аналогично примеру 1.

2. Приготовление эпоксидных сферопластиков, модифицированных наночастицами.

Полная загрузка вакуумного смесителя включает: 208,2 г эпоксидной композиции; 101,4 г отвердителя марки XT-411; 62,0 г стеклосфер марки МСВП и 44,6 г наномодификатора - тонкодисперного оксида цинка, что составляет 12 вес. % от массы матрицы эпоксидного сферопластика.

Результаты механических испытаний образцов из заявляемого состава эпоксидного сферопластика и образцов, приготовленных из материала, взятого в качестве прототипа приведены в таблице 1.

Заявляемый наномодифицированный эпоксидный сферопластик имеет улучшенные механические характеристики при нормальных и повышенных температурах с сохранением высокой химической стойкости и может найти применение в качестве конструкционного материала в строительной, автомобильной и/или судостроительной промышленности, возможно использование в ряде других отраслей: мебельной промышленности, авиастроении и других.

Наномодифицированный эпоксидный сферопластик, на основе эпоксидной композиции марки 03-18, включающий отвердитель аминного типа ХТ-411 и наполнители - наномодификатор и стеклосферы - полые стеклянные шарики со средним размером 10-15 мкм, отличающийся тем, что в качестве наномодификатора он содержит наноразмерный порошок оксида цинка с размером частиц от 10 до 100 нм, полученный методом буферного окисления, в количестве 5-12 вес. % на массу эпоксидного сферопластика.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 47.
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
27.10.2013
№216.012.7a16

Система защиты от эрозионно-коррозионного разрушения корпусов морских судов и сооружений

Изобретение относится к системам защиты от эрозионно-коррозионного разрушения подводной поверхности корпусов морских судов, морских сооружений освоения шельфа замерзающих морей, например морских стационарных и плавучих буровых платформ, и может быть использовано в другой морской технике,...
Тип: Изобретение
Номер охранного документа: 0002496916
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.9099

Сырьевая смесь для получения негорючего нетоксичного теплозвукоизоляционного материала на основе тонкодисперсной минеральной пены

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также...
Тип: Изобретение
Номер охранного документа: 0002502710
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9106

Сплав на основе титана

Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения. Сплав...
Тип: Изобретение
Номер охранного документа: 0002502819
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9eb4

Сплав на основе титана

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и может быть использовано в элементах оборудования химических производств, в сварных соединениях судостроения. Сплав на основе титана содержит, мас. %: алюминий 4,3-6,3, молибден 1,5-2,5, углерод 0,05-0,14,...
Тип: Изобретение
Номер охранного документа: 0002506336
Дата охранного документа: 10.02.2014
20.08.2014
№216.012.eaa6

Нанокомпозит на основе никель-хром-молибден

Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы. Нанокомпозит на основе никеля для нанесения покрытий методами гетерофазного напыления содержит, мас.%: хром -...
Тип: Изобретение
Номер охранного документа: 0002525878
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.eef2

Антифрикционная композиция

Изобретение относится к наполненным полимерным материалам, в частности к материалам на основе углеродного тканого армирующего материала и эпоксидного термореактивного полимерного связующего. Антифирикционный материал включает углеродную ткань из волокон с фиксированным размером кристаллитов по...
Тип: Изобретение
Номер охранного документа: 0002526989
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f8a9

Многослойный композиционный материал для защиты от электромагнитного излучения

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из...
Тип: Изобретение
Номер охранного документа: 0002529494
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fae6

Способ получения нанокристаллического порошка

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из...
Тип: Изобретение
Номер охранного документа: 0002530076
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fb71

Электрод для сварки теплоустойчивых сталей

Изобретение может быть использовано при ручной дуговой сварке конструкций химического машиностроения из сталей 2,25%Cr-1%Mo-0,25%V композиции. Электрод состоит из стержня из легированной стали 2,25%Cr-1%Mo-0,25%V и покрытия, содержащего следующие компоненты (в % по массе): мрамор 30,5-56,0,...
Тип: Изобретение
Номер охранного документа: 0002530215
Дата охранного документа: 10.10.2014
Показаны записи 1-10 из 41.
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
27.10.2013
№216.012.7a16

Система защиты от эрозионно-коррозионного разрушения корпусов морских судов и сооружений

Изобретение относится к системам защиты от эрозионно-коррозионного разрушения подводной поверхности корпусов морских судов, морских сооружений освоения шельфа замерзающих морей, например морских стационарных и плавучих буровых платформ, и может быть использовано в другой морской технике,...
Тип: Изобретение
Номер охранного документа: 0002496916
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.9099

Сырьевая смесь для получения негорючего нетоксичного теплозвукоизоляционного материала на основе тонкодисперсной минеральной пены

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также...
Тип: Изобретение
Номер охранного документа: 0002502710
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9106

Сплав на основе титана

Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения. Сплав...
Тип: Изобретение
Номер охранного документа: 0002502819
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9eb4

Сплав на основе титана

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и может быть использовано в элементах оборудования химических производств, в сварных соединениях судостроения. Сплав на основе титана содержит, мас. %: алюминий 4,3-6,3, молибден 1,5-2,5, углерод 0,05-0,14,...
Тип: Изобретение
Номер охранного документа: 0002506336
Дата охранного документа: 10.02.2014
20.08.2014
№216.012.eaa6

Нанокомпозит на основе никель-хром-молибден

Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы. Нанокомпозит на основе никеля для нанесения покрытий методами гетерофазного напыления содержит, мас.%: хром -...
Тип: Изобретение
Номер охранного документа: 0002525878
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.eef2

Антифрикционная композиция

Изобретение относится к наполненным полимерным материалам, в частности к материалам на основе углеродного тканого армирующего материала и эпоксидного термореактивного полимерного связующего. Антифирикционный материал включает углеродную ткань из волокон с фиксированным размером кристаллитов по...
Тип: Изобретение
Номер охранного документа: 0002526989
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f8a9

Многослойный композиционный материал для защиты от электромагнитного излучения

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из...
Тип: Изобретение
Номер охранного документа: 0002529494
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fae6

Способ получения нанокристаллического порошка

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из...
Тип: Изобретение
Номер охранного документа: 0002530076
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fb71

Электрод для сварки теплоустойчивых сталей

Изобретение может быть использовано при ручной дуговой сварке конструкций химического машиностроения из сталей 2,25%Cr-1%Mo-0,25%V композиции. Электрод состоит из стержня из легированной стали 2,25%Cr-1%Mo-0,25%V и покрытия, содержащего следующие компоненты (в % по массе): мрамор 30,5-56,0,...
Тип: Изобретение
Номер охранного документа: 0002530215
Дата охранного документа: 10.10.2014
+ добавить свой РИД