×
07.06.2019
219.017.74eb

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области антенных измерений и может быть использовано при проведении экспериментальных проверок, испытаний и исследований антенных систем. Способ определения коэффициента направленного действия (КНД) антенны включает измерение нормированной диаграммы направленности антенны (ДНА) в двух меридианных ортогональных сечениях. При этом пространственная ДНА представляется конечным множеством дискретных значений, измеренных в двух меридианных ортогональных сечениях и интерполированных между ними в экваториальных плоскостях по дуге эллипса, вычисление КНД антенны производится как отношение площадей поверхностей шара единичного радиуса к поверхности интерполированной ДНА. Технический результат заключается в снижении относительной методической погрешности определения КНД антенны, при сохранении простоты, оперативности и доступности получения результата. 1 ил.

Изобретение относится к области антенных измерений и может быть использовано при проведении экспериментальных проверок, испытаний и исследований антенных систем.

Коэффициент направленного действия (КНД) является одной из числовых характеристик антенны, которая оценивает ее способность концентрировать энергию на главном направлении излучения (или приема) и определяет зависимость коэффициента усиления (КУ) антенны от направления излучения (или приема).

КНД антенны, относительно изотропного излучателя, однозначно определяется значениями нормированной ДНА по мощности (F2(θ, ϕ)) измеренными в сферической системе координат [1, стр. 445, 446]:

Сложность измерения значений нормированной ДНА по мощности в сферической системе координат, с требуемой точностью (дискретностью), затрудняет практическое применение формулы (1). На практике ДНА измеряется в двух ортогональных сечениях, при (ϕ=0 и ϕ=π/2, и применяются различные способы (формулы) определения КНД.

Известен способ определения КУ (G) антенны [2, стр. 281-283] методом сравнения (замещения), включающий измерения и сравнения уровней мощности сигналов излучаемых от испытуемой (Р) и эталонной (Р0) с известным КУ (G0) антенн, при одинаковых условиях эксперимента:

Недостатками способа являются необходимость проведения эксперимента с применением специальной измерительной трассы (наклонной или вертикальной) и использование дополнительного оборудования. Методическая погрешность способа соизмерима с инструментальной и в значительной мере определяется условиями интерференции. Это накладывает дополнительные требования к измерительной трассе и оборудованию.

Известен способ определения КУ антенны методом сравнения с эталонной антенной и устройство для его осуществления [3], обеспечивающий повышение точности измерения до 7%, за счет понижения измеряемого уровня. Недостатком способа является большое количество оборудования (до 10 единиц), сложность и длительность измерения (в каждой точке измерение занимает до 5 минут).

Известен способ определения КНД антенны [4, стр. 28], включающий измерение и построение ее нормированной ДНА в двух меридианных ортогональных сечениях, определение их ширины по уровню половинной мощности, представление модели ДНА в виде телесного угла с одинаковой интенсивностью излучения, образованного меридианными ортогональными сечениями по уровню половинной мощности, и отсутствия побочного излучения, определение КНД антенны, как отношение площадей поверхности сферы, единичного радиуса, к сферической поверхности телесного угла модели нормированной ДНА:

где Ω - телесный угол, представляющий идеализированную нормированную ДНА по мощности, рад;

θx и θy - ширина ортогональных сечений ДНА по уровню половинной мощности, градусы.

Достоинством данного способа являются простота, оперативность и доступность определения КНД антенны, недостатком - высокая относительная методическая погрешность способа, соизмеримая с инструментальной до 25%, и зависит от субъективного выбора коэффициента в числителе.

В качестве прототипа взят способ определения КНД антенны [4, стр. 28], включающий измерение нормированной ДНА в двух меридианных ортогональных сечениях, представление нормированной ДНА ее средним значением по двух меридианным ортогональным сечениям, вычисление КНД антенны по формуле:

Достоинством данного способа является оперативность и доступность определения КНД антенны по измеренным меридианным ортогональным сечениям.

Недостатком является зависимость относительной методической погрешности способа от асимметрии ДНА, которая достигает 12%, при асимметрии 0,5.

Технический результат предлагаемого способа заключается в снижения относительной методической погрешности определения КНД антенны, при сохранении простоты, оперативности и доступности получения результата.

Технический результат достигается тем, что в известном способе, включающий измерение нормированной ДНА в двух меридианных ортогональных сечениях, дополнительно пространственная ДНА представляется конечным множеством дискретных значений, измеренных в двух меридианных ортогональных сечениях и интерполированных между ними в экваториальных плоскостях по дуге эллипса, вычисление КНД антенны, как отношение площадей поверхности шара, единичного радиуса, к поверхности интерполированной ДНА:

где: m и n - порядковые номера М и N дискретизаций углов с шагом Δθ и Δϕ в меридианной и экваториальной плоскостях, соответственно;

{[Fi(m, n)]i} - множество матриц конечных дискретных значений ДНА, интерполированных в i=1, 2, 3, 4 квадрантах экваториальной плоскости;

- интерполированные значения ДНА по дуге эллипса в i-том квадранте экваториальной плоскости;

Fx(m,n) и Fy(m,n) - измеренные значения ДНА в двух меридианных ортогональных сечениях (вершинах эллипса).

Простота, оперативность и доступность определения КНД антенны достигается тем, что выполняется совместно с обработкой результатов измерений ДНА в двух ортогональных сечениях одним программным продуктом.

Сравнительный анализ показывает, что предложенный способ отличается от известного, наличием нового представления пространственной модели нормированной ДНА, в виде множества измеренных ее значений в двух меридианных ортогональных сечениях и интерполяционных значений между ними в экваториальных плоскостях по дуге эллипса, полуоси которого определяются меридианными ортогональными сечениями.

При изучении известных решений в данной области техники указанная совокупность признаков, отличающихся от прототипа, не была выявлена, что указывает на «новизну» заявленного изобретения.

На фиг. 1а представлена пространственная модель основного лепестка нормированной ДНА по мощности в сферической системе координат в виде измеренных значений в двух меридианных ортогональных сечениях F(θ,0),

F(θ,π/2) и интерполяционных значений между ними F(m,n). Узловые значения показаны жирными точками, интерполированные - светлыми точками.

На фиг. 1б представлены экваториальные сечения модели ДНА предлагаемого способа, в виде эллипса и способа прототипа, в виде двух окружностей, полученных от вращения двух ортогональных сечений нормированной ДНА относительно основного направления излучения.

Сущность предлагаемого способа заключается в том, что пространственная модель ДНА представляется конечным множеством узловых значений, измеренных в двух меридианных ортогональных сечениях и интерполированных значений между ними (фиг. 1а).

Измеренные значения ДНА в двух меридианных ортогональных сечениях являются исходными данными для определения КНД, которые могут быть представлены в виде матриц-столбцов квадрантов экваториальной плоскости:

где: θ ∈ [0…π] - меридианные угловые координаты;

ϕ ∈ [0, (i-1)π/2] - экваториальные угловые координаты;

i = 1, 2, 3, 4 - квадранты экваториальной плоскости.

Из теории электромагнитного поля известно, что значение ДНА в дальней зоне излучения, есть результат сложения комплексных уровней напряженности поля, создаваемых элементами антенны (распределением тока в антенне) и описывается монотонными тригонометрическими функциями. Проекция экваториального сечения пространственной асимметричной ДНА на плоскость (ху) представляет единственный эллипс, построенный на двух окружностях, полученных от вращения двух измеренных меридианных ортогональных сечений (фиг 1б).

Множество проекций экваториальных сечений асимметричной ДНА представляют семейством эллипсов с различным эксцентриситетом, полуоси которых имеют направления ϕ ∈ [0, (i-1)π/2], а их модули определяются:

Монотонность изменения ДНА в экваториальной плоскости по дуге эллипса, осями которого являются меридианные ортогональные сечения, позволяет применить интерполяцию между ними.

Интерполированные значения пространственной ДНА, между меридианными ортогональными сечениями i-го квадранта экваториальной плоскости по дуге эллипса, выражается через его текущий радиус [5, стр. 1]:

Интерполяция пространственной ДНА представляется конечным множеством узловых и интерполированных точек, образующих сетку элементов сферической поверхности различной выпуклости, как функция дискретных значений углов меридианной и экваториальной плоскостей:

где m и n - порядковые номера М и N дискретизаций углов в меридианной и экваториальной плоскостях, с равномерным шагом Δθϕ.

Конечные значения пространственной ДНА включают дискретные значения, измеренные Fx(m,n) и Fy(m,n) в двух меридианных ортогональных сечениях и интерполированные между ними i-го квадранта m-экваториальной плоскости по дуге эллипса:

По значениям Fi(m,n) составляются матрицы интерполированных значений ДНА, между меридианными ортогональными сечениями i-го квадранта экваториальной плоскости и объединяются в i- множество матриц:

Вычисляется КНД антенны, как отношение площадей поверхности шара единичного радиуса, к поверхности интерполированной ДНА, по формуле (1):

.

Предлагаемый способ определения КНД антенны реализован программно совместно с обработкой результатов измерения и построения ДНА.

Относительная методическая погрешность предлагаемого способа определения КНД (D) определяется шагом дискретизации, оценивается экспериментально, методом ее сравнения с калиброванным КНД «эталонной антенны» (Dэ):

При сравнении измеренного КНД с калибровочным значением измерительной антенны П6-33А с асимметрией 0,5 [6, стр. 40], относительная методическая погрешность составила δ=5%, что значительно ниже, чем в способе прототипе δ=12,5%. Объясняется это тем, что в способе прототипе экваториальное сечение ДНА представляется средней окружностью, полученной от вращения двух ее ортогональных сечений, относительно направления излучения, а в предлагаемом способе - эллипсом.

Источники информации:

1 Н.П. Гавель, А.Д. Истрашин, Ю.К. Муравьев, В.П. Серков. Антенны, часть 2 Ленинград. Военная краснознаменная академия связи, 1963 г., 512 с.

2 Карл Ротхаммель. Антенны, том 2. М:, ДАНВЕЛ, 2005 г., 450 с.

3 Способ определения коэффициента усиления антенны методом сравнения с эталонной антенной и устройство для его осуществления. Патент RU 2335779 С2. Бюллетень №28, от 10.10.2008 г.

4 О.В. Попов и др. Методы измерения характеристик антенно-фидерных устройств. Ленинград. Военная академия связи им. С.М. Буденного, 1990 г., 182 с.

5 Эллипс. Формулы, признаки и свойства эллипса. Сайт 2017 г. URL: http://ru.onlinemschool.com/math/formula/ellipse/ (дата обращения: 09.04.2017).

6 Антенна измерительная П6-33. Техническое описание и инструкция по эксплуатации. 1977 г., 49 с.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НАПРАВЛЕННОГО ДЕЙСТВИЯ АНТЕННЫ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 244.
13.11.2019
№219.017.e149

Пиротехнический патрон для стимулирования осадков

Изобретение относится к техническим средствам, предназначенным для активных воздействий на облака с целью стимулирования осадков, и может быть использовано также для защиты сельскохозяйственных культур от градобитий. Пиротехнический патрон для стимулирования осадков содержит гильзу, в которой...
Тип: Изобретение
Номер охранного документа: 0002705677
Дата охранного документа: 11.11.2019
21.11.2019
№219.017.e437

Способ определения искусственных ароматизаторов в спиртосодержащих растворах

Изобретение относится к аналитической химии растворов и может быть использовано для определения искусственных ароматизаторов в спиртосодержащих растворах. Способ определения искусственных ароматизаторов в спиртосодержащих растворах включает пробоотбор, определение наличия искусственных...
Тип: Изобретение
Номер охранного документа: 0002706438
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e44c

Устройство измерения расхода жидкости

Изобретение относится к измерительной технике, а именно к измерению расхода жидкостей, и может быть использовано в автоматизированных системах управления технологическими процессами в воздухоразделительных установках. Устройство измерения расхода жидкости состоит из мерного бачка с приемником...
Тип: Изобретение
Номер охранного документа: 0002706439
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e474

Способ локальной навигации подвижного объекта

Изобретение относится к навигации и предназначено для определения координат подвижного объекта на взлетно-посадочной полосе (рулежной дорожке, автодороге и т.д.) с установленными на ней кодовыми метками, а также координат и габаритов повреждений и препятствий на взлетно-посадочной полосе. Может...
Тип: Изобретение
Номер охранного документа: 0002706444
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e478

Способ определения координат летательного аппарата относительно взлетно-посадочной полосы

Изобретение относится к навигации и может быть использовано для автоматического управления посадкой летательного аппарата, коррекции инерциальных навигационных систем на стартовой позиции в процессе взлета. Способ определения координат летательного аппарата относительно взлетно-посадочной...
Тип: Изобретение
Номер охранного документа: 0002706443
Дата охранного документа: 19.11.2019
21.11.2019
№219.017.e480

Способ измерения радиуса пространственной когерентности локационных оптических сигналов

Изобретение относится к области оптико-электронной техники и касается способа измерения радиуса пространственной когерентности локационных оптических сигналов. Способ включает в себя облучение объекта отражения когерентным оптическим излучением, детектирование опорного, отраженного от объекта и...
Тип: Изобретение
Номер охранного документа: 0002706510
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4f4

Летательный аппарат

Изобретение относится к самолетам, выполненным по аэродинамической схеме «летающее крыло». Летательный аппарат содержит воздухозаборное устройство, расположенную в крыле силовую установку, систему управления вектором тяги реактивных двигателей силовой установки, системы управления и...
Тип: Изобретение
Номер охранного документа: 0002706760
Дата охранного документа: 20.11.2019
27.11.2019
№219.017.e6dd

Способ и устройство создания адаптивных радиопомех

Изобретение относится к радиоэлектронному подавлению систем управления высокоточным оружием и может быть использовано при разработке комплексов радиоподавления, предназначенных для защиты воздушных и наземных объектов от поражения самонаводящимися ракетами. Способ создания адаптивных...
Тип: Изобретение
Номер охранного документа: 0002707200
Дата охранного документа: 25.11.2019
29.11.2019
№219.017.e741

Топливный брикет и способ его получения

Изобретение раскрывает топливный брикет, содержащий горючее, связующее, отвердитель и наполнитель - лузга семян масленичных культур, характеризующийся тем, что горючее содержит обезвоженный нефтешлам, связующее - нефтяной кокс, а отвердитель цемент при следующем соотношении компонентов, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002707297
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e769

Способ выбора площадки для посадки воздушного судна вертолетного типа

Изобретение относится к области радиолокации, а именно к выбору площадки для посадки воздушного судна вертолетного типа, и может быть использовано для обеспечения безопасной посадки воздушного судна вертолетного типа (ВСВТ) на неподготовленную заснеженную площадку в условиях недостаточной...
Тип: Изобретение
Номер охранного документа: 0002707275
Дата охранного документа: 26.11.2019
Показаны записи 1-2 из 2.
19.01.2018
№218.015.ffb6

Способ построения панорамного радиолокационного изображения объекта

Изобретение относится к области исследования радиолокационных характеристик объекта и может быть использовано при проведении исследований радиолокационной заметности, оценки эффективности мероприятий по ее снижению, а также для получения исходных данных для решения задач идентификации и...
Тип: Изобретение
Номер охранного документа: 0002629372
Дата охранного документа: 29.08.2017
29.05.2018
№218.016.58c6

Способ обнаружения работы каналов управления беспилотным летательным аппаратом

Изобретение относится к технике радиоэлектронной борьбы и может быть использовано в аппаратуре радиоразведки техники радиоэлектронного подавления (РЭП) системы управления летательными аппаратами (БЛА). Эффективное РЭП БЛА, включающее постановку помех или перехват управления БЛА, возможно по...
Тип: Изобретение
Номер охранного документа: 0002653530
Дата охранного документа: 11.05.2018
+ добавить свой РИД