×
21.11.2019
219.017.e480

СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптико-электронной техники и касается способа измерения радиуса пространственной когерентности локационных оптических сигналов. Способ включает в себя облучение объекта отражения когерентным оптическим излучением, детектирование опорного, отраженного от объекта и смешанного опорного и отраженного излучения матричным фотоприемником, каждый фоточувствительный элемент которого имеет координатную привязку. Из суммарного фототока каждого фоточувствительного элемента выделяют переменную составляющую, вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента и вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений, падающих на каждый фоточувствительный элемент. По координатам фоточувствительных элементов с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение радиуса пространственной когерентности отраженного от объекта оптического излучения. Технический результат заключается в повышении точности измерений. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [1]) измерения радиуса пространственной когерентности лазерного излучения, основанный на освещении рассеивающего объекта лазерным излучением, приеме рассеянного излучения из области фокусировки исследуемого излучения одновременно в двух точках, преобразовании интенсивности рассеянного излучения в электрические сигналы, определении их взаимной корреляционной функции, определении радиуса пространственной когерентности ρк по значению расстояния ρ между фотоэлементами, корреляционная функция выходных сигналов которых уменьшается в m раз по формуле

Недостатком способа является недостаточная точность измерения ρк оптического излучения, обусловленная оценкой его значения по интенсивности принимаемого излучения. В дополнение, в случае рассеянного излучения малой мощности возникает дополнительное ограничение в его приеме, которое также влияет на достоверность результата.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности измерения ρк оптического излучения.

Сущность изобретения заключается в измерении ρк локационных оптических сигналов на основе оценки фазовых соотношений принимаемого и опорного излучений на поверхности матричного фотоприемника (МФП).

Технический результат достигается тем, что в известном способе измерения ρк локационных оптических сигналов, основанном на облучении объекта отражения когерентным оптическим излучением, детектируют опорное когерентное оптическое излучение МФП, каждый фоточувствительный элемент которого имеет координатную привязку, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента МФП, где - координатный номер фоточувствительного элемента МФП, вызванного действием опорного когерентного оптического излучения, детектируют отраженное от объекта отражения оптическое излучение МФП, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента МФП, вызванного действием отраженного от объект отражения оптического излучения, смешивают отраженное от объекта отражения оптическое излучение с опорным когерентным оптическим излучением, детектируют смешанное оптическое излучение МФП и выделяют из суммарного фототока каждого ij фоточувствительного элемента МФП переменную составляющую как вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента МФП по формуле вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений падающих на каждый фоточувствительный элемент, как отношение по координатам фоточувствительных элементов МФП с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение ρк оптического излучения отраженного от объекта отражения.

Степень согласованности колебаний (когерентности) в поперечном сечении оптического излучения, фактически, определяется степенью неизменности фаз рассматриваемых колебаний в различных точках пространства. Следовательно, степень когерентности оптических колебаний проявляется при интерференции, которая определяется фазовыми соотношениями смешиваемых волн источников излучения (см., например, [2] стр. 84). Использование фазовых характеристик принимаемого поля дают более точные результаты измерений различный параметров, так как среда распространения имеет меньшее на их влияние (см., например, [2] стр. 92). В условиях смешивания двух излучений ширина контрастности интерференционной картины практически будет определяться волной с наименьшим ρк. Следовательно, смешивая отраженный сигнал с опорным с большей степенью когерентности можно по фазовым соотношениям измерить его ρк.

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - МФП; 2 - интерференционное изображение смешиваемых волн на площадке МФП; 3 - граница области «развала» интерференционной изображения смешиваемых волн на площадке МФП; 4 - источник когерентного оптического излучения (ИКОИ); 5 - формирующая оптика; 6 - объект локации; ρк - радиус пространственной когерентности оптического излучения.

Излучение ИКОИ 4 делят формирующей оптикой 5 два потока. Направляют первый поток на объект 6. Второй оптический поток с помощью формирующей оптики 5 направляют на МФП 1, каждый фоточувствительный элемент которого имеет координатную привязку. Детектируют второй оптический поток МФП 1, измеряют и запоминают значение величины фототока iОПОР каждого фоточувствительного элемента. Смешивают отраженный от объекта 6 оптический поток с помощью формирующей оптики 5 со вторым оптическим потоком. При смешивании волн анализируемого и опорного излучений амплитуда сигнала каждого фоточувствительного элемента МФП 1 будет определяться степенью фазового согласования Δϕ на его площадке (см., например, [3 стр. 93]). Детектируют смешанный оптический поток МФП 1. При этом выходной ток каждого фоточувствительного элемента МФП 1 образуют постоянная и переменная составляющие i=iПОС+iПЕР. Значение iПЕР при пространственной, поляризационной и частотной согласованности определяется как а значение iПОС, как iОПОР+iC, где iОПОР, iC - постоянные составляющие фототока, вызванные действием поля только опорного или сигнального (анализируемого) оптических излучений. С целью получения значения Δϕ на поверхности каждого фоточувствительного элемента МФП 1 выделяют из суммарного фототока каждого фоточувствительного элемента переменную составляющую, используя запомненные значения iОПОР, iСiПЕР=i-(iC+iОПОР), а так же вычисляют максимальное значение переменной составляющей фототока iПЕРмах (при Δϕ=0) каждого фоточувствительного элемента МФП 1 по формуле Величину Δϕ между частями смешиваемых оптических потоков, падающих на каждый фоточувствительный элемент МФП 1, вычисляют как отношение В результате получают координатную матрицу значений Δϕ, которая характеризует интерференцию смешиваемых потоков 2 или ее отсутствие. Пространственная область постоянных значений (нулевых) Δϕ характеризует отсутствие интерференции смешиваемых потоков, а область переменных значений Δϕ - интерференцию смешиваемых потоков 2. Область переменных значений Δϕ имеет границу 3, которая определяет ρк. Следовательно, по координатам фоточувствительных элементов МФП 1 с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение ρк оптического излучения отраженного от объекта отражения (с учетом преобразования оптических потоков формирующей оптикой).

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает оптически связанные: объект 6, ИКОИ 4, разделительную пластину 7; зеркало 8, поляризатор 9, МФП 1, выходы которого подсоединены к входам, информационно связанных микропроцессора 10 и запоминающего устройства 11 Устройство работает следующим образом. Излучение ИКОИ 4 делят разделительной пластиной 7 два потока. Поляризатор 9 исключает влияние поляризационного несогласования детектируемых полей на величину выходных сигналов МФП 1. Направляют первый поток на объект 6. Второй оптический поток с помощью разделительной пластиной 7 и зеркала 8 направляют на МФП 1. Детектируют второй оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в запоминающее устройство 11. Детектируют отраженный от объекта 6 оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в запоминающее устройство 11. Смешивают отраженный от объекта 6 оптический поток с помощью разделительной пластиной 7 и зеркала 8 со вторым оптическим потоком. Детектируют смешанный оптический поток МФП 1, измеряют значение величины фототока каждого фоточувствительного элемента и передают их значения и значения соответствующих координат фоточувствительного элемента в микропроцессор 10. Микропроцессор 10 считывает данные из запоминающего устройства 11 и вычисляет значение ρк.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении точности измерения ρк за счет оценки фазовых соотношений принимаемого и опорного излучений на поверхности МФП. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ измерения ρк локационных оптических сигналов, основанный на облучении объекта отражения когерентным оптическим излучением, детектировании опорного когерентного оптического из лучения МФП, каждый фоточувствительный элемент которого имеет координатную привязку, измерении и запоминании значения величины фототока каждого фоточувствительного элемента МФП, где - координатный номер фоточувствительного элемента МФП, вызванного действием опорного когерентного оптического излучения, детектировании отраженного от объекта отражения оптического излучения МФП, измерении и запоминании значения величины фототока каждого фоточувствительного элемента МФП, вызванного действием отраженного от объекта отражения оптического излучения, смешивании отраженного от объекта отражения оптического излучения с опорным когерентным оптическим излучением, детектировании смешанного оптического излучения МФП и выделении из суммарного фототока каждого ij фоточувствительного элемента МФП переменной составляющей как вычислении максимального значения переменной составляющей фототока каждого фоточувствительного элемента МФП по формуле вычислении величины фазового рассогласования между частями смешиваемых оптических излучений Δϕj, падающих на каждый фоточувствительный элемент, как отношение определении по координатам фоточувствительных элементов МФП с постоянными значениями величин фазовых рассогласований координат границы области отсутствия интерференции смешиваемых оптических излучений, вычислении по значениям которых значения ρк оптического излучения отраженного от объекта отражения.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические и оптико-электронные узлы и устройства.

1 Авторское свидетельство SU №1429705. Способ измерения радиуса пространственной когерентности. Беленький М.С., Глушков А.Н., Нетреба П.И., Покасов В.В. МПК G01J 3/00. 4 с. Регистрация 12.01.87. Опубл. 07.10.92 г. Бюл. 37.

2 Беленький М.С., Лукин В.П., Миронов В.Л, Покасов В.В. Когерентность лазерного излучения в атмосфере. М.: «Наука», 1985. 176 с.

Способ измерения радиуса пространственной когерентности локационных оптических сигналов, основанный на облучении объекта отражения когерентным оптическим излучением, отличающийся тем, что детектируют опорное когерентное оптическое излучение матричным фотоприемником, каждый фоточувствительный элемент которого имеет координатную привязку, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента матричного фотоприемника, где - координатный номер фоточувствительного элемента матричного фотоприемника, вызванного действием опорного когерентного оптического излучения, детектируют отраженное от объекта отражения оптическое излучение матричным фотоприемником, измеряют и запоминают значение величины фототока каждого фоточувствительного элемента матричного фотоприемника, вызванного действием отраженного от объекта отражения оптического излучения, смешивают отраженное от объекта отражения оптическое излучение с опорным когерентным оптическим излучением, детектируют смешанное оптическое излучение матричным фотоприемником и выделяют из суммарного фототока каждого i фоточувствительного элемента матричного фотоприемника переменную составляющую как вычисляют максимальное значение переменной составляющей фототока каждого фоточувствительного элемента матричного фотоприемника по формуле вычисляют величину фазового рассогласования между частями смешиваемых оптических излучений Δϕ, падающих на каждый фоточувствительный элемент, как отношение по координатам фоточувствительных элементов матричного фотоприемника с постоянными значениями величин фазовых рассогласований определяют координаты границы области отсутствия интерференции смешиваемых оптических излучений, по значениям которых вычисляют значение радиуса пространственной когерентности оптического излучения отраженного от объекта отражения.
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
СПОСОБ ИЗМЕРЕНИЯ РАДИУСА ПРОСТРАНСТВЕННОЙ КОГЕРЕНТНОСТИ ЛОКАЦИОННЫХ ОПТИЧЕСКИХ СИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 244.
25.08.2017
№217.015.9bc8

Способ определения координат наземного источника радиоизлучения при радиопеленговании с борта летательного аппарата

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение...
Тип: Изобретение
Номер охранного документа: 0002610150
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.bb52

Способ управления приемниками воздушного давления

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и...
Тип: Изобретение
Номер охранного документа: 0002615813
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bf3b

Способ определения расстояния до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения расстояния с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617210
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.bf46

Способ формирования маршрута носителя пеленгатора

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета. Достигаемый технический результат - формирование маршрута носителя пеленгатора, определяющего местоположение излучателя, при котором достигается...
Тип: Изобретение
Номер охранного документа: 0002617127
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfc3

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002617157
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c160

Способ определения дальности до неподвижного источника излучения движущимся пеленгатором

Изобретение относится к методам определения дальности с использованием пеленгатора, размещенного на носителе, выполняющего движение в направлении источника радиоизлучения, в интересах снижения погрешности определения координат. Достигаемый технический результат – снижение погрешности...
Тип: Изобретение
Номер охранного документа: 0002617447
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c5b9

Фазовый пеленгатор

Изобретение относится к области радиотехники и может использоваться в радиомониторинге при поиске источников радиоизлучения на ограниченной территории и в помещениях, например, специальных электронных устройств перехвата информации. Достигаемый технический результат изобретения - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002618522
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c61d

Способ буксировки самолетов с использованием малогабаритного буксировщика с дистанционным управлением

Изобретение относится к наземному обеспечению воздушных судов, в частности к их буксированию. Способ буксировки реализуется использованием малогабаритного буксировщика с дистанционным управлением, включающего рампу (8) механизма подъема и фиксации колес передней стойки воздушного судна и...
Тип: Изобретение
Номер охранного документа: 0002618611
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.cb3f

Способ измерения задержки радиосигналов

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный...
Тип: Изобретение
Номер охранного документа: 0002620131
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb48

Способ амплитудного двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – обеспечение двухмерного всеракурсного пеленгования одновременно в двух...
Тип: Изобретение
Номер охранного документа: 0002620130
Дата охранного документа: 23.05.2017
Показаны записи 1-10 из 51.
20.05.2014
№216.012.c50e

Способ определения координат точки падения боеприпаса

Способ относится к области проведения испытаний огневых комплексов для оценки точности попадания в цель различных боеприпасов. Способ определения координат точки падения боеприпаса основан на одновременной регистрации сейсмических и оптических волн, возникающих при ударе о грунт и взрыве боевой...
Тип: Изобретение
Номер охранного документа: 0002516205
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5fa

Способ определения направления на источник оптического излучения подвижными средствами

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, в системах точного нацеливания узких оптических лучей, системах траекторных измерений, а также в системах обеспечения устойчивости оптического канала передачи...
Тип: Изобретение
Номер охранного документа: 0002516441
Дата охранного документа: 20.05.2014
20.06.2014
№216.012.d22a

Способ применения тепловой ловушки

Изобретение относится к области противодействия управляемому оружию, в частности, к способу противодействия ложной тепловой ловушкой. Способ применения ложной тепловой ловушки основан на обнаружении управляемого элемента поражения с тепловой головкой самонаведения. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002519573
Дата охранного документа: 20.06.2014
10.09.2014
№216.012.f188

Способ определения отклонения угла наклона плоскости поляризации оптического излучения

Изобретение относится к области оптической локации объектов и касается измерений изменений параметров поляризации оптического излучения при прохождении оптически активного вещества. Сущность изобретения заключается в делении монохроматического линейно-поляризованного излучения на два равных...
Тип: Изобретение
Номер охранного документа: 0002527654
Дата охранного документа: 10.09.2014
27.01.2015
№216.013.2169

Способ адаптивного оптико-электронного наблюдения

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных...
Тип: Изобретение
Номер охранного документа: 0002540001
Дата охранного документа: 27.01.2015
27.01.2015
№216.013.216a

Способ оптико-электронного наблюдения

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности обнаружения и наблюдения подстилающей поверхности. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002540002
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.21e1

Способ пространственного мониторинга источников электромагнитного излучения

Изобретение относится к пассивным системам радиомониторинга и может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Достигаемый технический результат - сокращение времени определения принадлежности местоположения ИРИ к ограниченной области пространства. Сущность...
Тип: Изобретение
Номер охранного документа: 0002540126
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c5

Способ контроля эффективности защиты информации

Изобретение относится к способам контроля эффективности защиты речевого сигнала от утечки по техническим каналам. Технический результат заключается в повышении достоверности оценки защищенности речевой информации. Измеряют октавные уровни сигнала и шума в выбранной контрольной точке. Определяют...
Тип: Изобретение
Номер охранного документа: 0002541122
Дата охранного документа: 10.02.2015
27.10.2015
№216.013.8aae

Способ поражения объектов, прикрываемых аэрозольным образованием

Изобретение относится к вооружению, а именно к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольным образованием, заключается в доставке средств генерации ультразвуковых колебаний в район местонахождения аэрозольного образования (АО), прикрывающего...
Тип: Изобретение
Номер охранного документа: 0002567105
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab2

Способ тягового заземления передвижных радиоэлектронных средств

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002567113
Дата охранного документа: 10.11.2015
+ добавить свой РИД