×
04.06.2019
219.017.7365

Результат интеллектуальной деятельности: Способ контроля динамической вязкости жидкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам контроля веществ, находящихся в жидком состоянии, и может быть использовано для автоматического измерения динамической вязкости жидкости. Способ контроля динамической вязкости жидкости при текущей температуре, в котором динамическая вязкость определяется произведением динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости. Техническим результатом является обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента. 1 ил.

Изобретение относится к приборам и методам контроля веществ, находящихся в жидком состоянии и может быть использовано для автоматического измерения динамической вязкости жидкости.

Известен способ измерения вязкости жидкости с помощью ротационного вискозиметра и устройство для его реализации (Вискозиметры автоматические ротационные ВАР-5М. Руководство по эксплуатации 5Ж2.842.008 РЭ). Способ заключается в приведении во вращательное движение с постоянной угловой скоростью вращающегося элемента, отделенного от воспринимающего элемента слоем контролируемой жидкости, и измерении момента вращения, действующего на воспринимающий элемент. При этом о вязкости контролируемой жидкости судят по значению момента вращения, действующего на воспринимающий элемент. Устройство содержит привод постоянной угловой скорости, укрепленный на его валу вращающийся элемент, воспринимающий элемент, который установлен на упругом элементе и измерительный преобразователь угла поворота воспринимающего элемента.

Недостатком известного способа является необходимость поддержания постоянной угловой скорости вращающегося элемента.

Технический результат - обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента.

Технический результат достигается тем, что способ контроля динамической вязкости жидкости, согласно изобретения, динамическая вязкость жидкости при текущей температуру равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.

Новизна заключается в том, что контроль динамической вязкости жидкости осуществляется за счет измерения угловой скорости вращающегося элемента, погруженного в жидкость при разных температурах.

Изобретение поясняется чертежом.

Приводной электродвигатель 1, угловая скорость ротора которого измеряется с помощью энкодера 2, соединен посредством вала 3 с вращающимся цилиндром 4, помещенным внутри неподвижного цилиндра 5, наполненного исследуемой жидкостью, температура которой определяется с помощью датчика температуры 6.

Реализуется предлагаемый динамический метод контроля динамической вязкости жидкости следующим образом.

На начальном этапе, когда вал 3 отсоединен от приводного электродвигателя 1, приводной электродвигатель 1 запускается в пределах от нуля до номинальной угловой скорости и на каждом этапе приращения угловой скорости определяется угловое ускорение:

(1)

где dω – изменение угловой скорости, с-1, dt1 – время за которое произошло изменение угловой скорости dω, с.

Для диапазона угловых скоростей от нуля до номинальной угловой скорости среднее значения углового ускорения в выражение (1) принимает вид:

(2)

где – номинальная угловая скорость вала электродвигателя, с-1, – время разгона электродвигателя в диапазоне от нуля до номинальной угловой скорости, с.

При этом среднее значение вращающего момента М, которое развивает приводной электродвигатель 1, определяется как:

(3)

где – коэффициент, характеризующий механические и добавочные потери в роторе электродвигателя, – приведенный к оси вращения ротора момент инерции вращающихся масс электродвигателя, кг м2.

Далее приводной электродвигатель 1 останавливается и к его ротору подсоединяется вал 3 и вращающийся цилиндр 4. Суммарный момент инерции вала 3 и присоединенному к нему вращающегося цилиндра 4 известен (может быть определен методом крутильных колебаний или расчетным методом) и равен .

Затем приводной электродвигатель 1 запускается и определяется значение углового ускорения системы вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», на каждом этапе приращения угловой скорости в пределах от нуля до номинальной угловой скорости:

(4)

Среднее значения углового ускорения при разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости, выражение (4) принимает вид:

(5)

где – время разгона приводного электродвигателя 1 от нуля до номинального угловой скорости, с.

Среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4» равно:

. (6)

Поскольку при первом и втором запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражения (3) и (6) можно приравнять и определить момент инерции вращающихся масс электродвигателя с учетом коэффициента потерь:

(7)

При разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости во время первого и второго запусков:

, (8)

а , (9)

Подставляя (8) и (9) в (7) получаем:

(10)

Далее для контроля динамической вязкости исследуемой жидкости, полностью заполняем пространство между вращающимся цилиндром 3 и неподвижным цилиндром 4 по уровню верхней кромки вращающегося цилиндра 3, определяем температуру исследуемой жидкости с помощью датчика температуры 6 и запускаем приводной электродвигатель 1.

При вращении вращающегося цилиндра 3 будет создаваться сила трения между вращающимся цилиндром 3 и исследуемой жидкостью, которая будет создавать момент трения. Тогда среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», определится:

, (11)

где - момент трения, обуславливаемый вязкостью исследуемой жидкости,

- момент инерции сил трения, создаваемых вязкостью исследуемой жидкости.

Поскольку при первом, втором и третьем запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражений (6) и (11) приравниваем:

(12)

Из (12) с учетом (7), (8), (9), и :

(13)

Из (13) момент трения, обусловленный вязкостью жидкости:

(14)

Зная динамическую вязкость исследуемой жидкости при температуре определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости и вычислим момент трения :

(15)

Определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости при температуре исследуемой жидкости и вычислим момент трения :

(16)

Соотношение динамических вязкостей исследуемой жидкости и при температурах и пропорционально соотношению крутящих моментов и :

(17)

Выделим из (17) искомый коэффициент динамической вязкости при температуре :

(18)

Способ контроля динамической вязкости жидкости отличающийся тем, что динамическая вязкость жидкости при текущей температуре равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости к времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.
Способ контроля динамической вязкости жидкости
Способ контроля динамической вязкости жидкости
Источник поступления информации: Роспатент

Показаны записи 81-90 из 138.
12.08.2019
№219.017.be77

Способ окорки лесоматериалов

Изобретение относится к деревообрабатывающей промышленности, в частности к окорке лесоматериалов. На окариваемый лесоматериал из сопла подают высокотемпературные дымовые газы, кинетическая и тепловая энергия которых достаточна для отделения коры. Дымовые газы формируются в камере сгорания, в...
Тип: Изобретение
Номер охранного документа: 0002696969
Дата охранного документа: 07.08.2019
12.08.2019
№219.017.bef9

Способ определения изменения термического сопротивления и коэффициента теплопроводности при возникновении в наружной стене физического эффекта встречных тепловых потоков по результатам теплофизических испытаний в натурных условиях

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях. Заявлен способ определения изменения термического сопротивления (R) и...
Тип: Изобретение
Номер охранного документа: 0002696674
Дата охранного документа: 05.08.2019
14.08.2019
№219.017.bf6d

Устройство для крепления видеоаппаратуры на стволе дерева

Устройство для крепления видеоаппаратуры на стволе дерева содержит Н-образный корпус, верхняя часть которого выполнена в виде козырька, а нижняя в виде площадки с закрепленным видеооборудованием. В задней части корпуса посредством болта и гайки шарнирно установлены дужки с отверстиями, в...
Тип: Изобретение
Номер охранного документа: 0002697171
Дата охранного документа: 12.08.2019
02.10.2019
№219.017.cc97

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор"

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор". Изобретение относится к приборам и методам контроля изделий машиностроения и может быть использовано для контроля эффективности...
Тип: Изобретение
Номер охранного документа: 0002701418
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.ccd0

Цифровой синтезатор фазоманипулированных сигналов

Изобретение относится к электронно-вычислительной технике и радиотехнике, предназначено для синтеза частотно-модулированных и фазоманипулированных сигналов и может быть использовано в системах радиолокации и связи. Технический результат заключается в возможности синтеза фазоманипулированных...
Тип: Изобретение
Номер охранного документа: 0002701050
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cd84

Способ выработки окоренных сортиментов и рабочий орган для его осуществления

Изобретения могут быть использованы в лесной промышленности для выработки окоренных сортиментов. Способ включает операции валки, обрезки сучьев, раскряжевки и окорки стволов поваленных деревьев. Поперечную распиловку ствола поваленного дерева осуществляют без замедления и прекращения вращения...
Тип: Изобретение
Номер охранного документа: 0002701336
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cff0

Плоская сплоточная единица

Изобретение относится к лесной отрасли, в частности при первоначальном лесосплаве по рекам с малыми и средними глубинами круглых лесоматериалов потребителям из труднодоступных лесоизбыточных регионов страны. Предлагаемая плоская сплоточная единица выполнена в виде выровненных круглых...
Тип: Изобретение
Номер охранного документа: 0002700303
Дата охранного документа: 16.09.2019
18.10.2019
№219.017.d7ed

Многоцелевая транспортно-технологическая платформа

Изобретение относится к транспортно-технологическим средствам, а именно к амфибийным вездеходам, способным преодолевать маршруты по слабонесущим опорным поверхностям, включая рыхлый снег, участки с тонким, битым льдом или открытой водой. Многоцелевая транспортно-технологическая платформа со...
Тип: Изобретение
Номер охранного документа: 0002703379
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.db5e

Способ диагностики и развития уровня когнитивно-моторных способностей человека

Изобретение относится к области медицины, к диагностике и развитию когнитивно-моторных способностей человека. Способ заключается в следующем: исследователь выбирает программу диагностики и/или развития из библиотеки программно-аппаратного комплекса (ПАК), содержащего средства видеоконтроля...
Тип: Изобретение
Номер охранного документа: 0002704236
Дата охранного документа: 24.10.2019
24.11.2019
№219.017.e565

Ручное устройство для образования лунок под посадку контейнеризированных сеянцев

Ручное устройство для образования лунок под посадку контейнеризированных сеянцев содержит тележку, на которой в задней ее части установлена полая трубка со сквозным отверстием для сеянцев. Параллельно полой трубке жестко смонтирован корпус рабочего органа. Внутри корпуса установлен стержень с...
Тип: Изобретение
Номер охранного документа: 0002706969
Дата охранного документа: 21.11.2019
Показаны записи 1-6 из 6.
20.11.2014
№216.013.085b

Способ определения момента инерции цепной передачи

Изобретение относится к способам инерционных испытаний цепных передач и позволяет определить момент инерции цепной передачи. Сущность изобретения заключается в том, что к входному валу цепной передачи присоединяется выходной вал электрического двигателя и крепится тело с эталонным моментом...
Тип: Изобретение
Номер охранного документа: 0002533540
Дата охранного документа: 20.11.2014
10.04.2019
№219.017.03a5

Рамный каркас распределительного шкафа

Изобретение относится к рамным каркасам распределительных шкафов, содержащим горизонтальные и вертикальные рамные профили, и направлено на повышение герметичности внутреннего пространства распределительного шкафа. Рамный каркас распределительного шкафа содержит вертикальные и горизонтальные...
Тип: Изобретение
Номер охранного документа: 0002384285
Дата охранного документа: 20.03.2010
02.10.2019
№219.017.cc97

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор"

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор". Изобретение относится к приборам и методам контроля изделий машиностроения и может быть использовано для контроля эффективности...
Тип: Изобретение
Номер охранного документа: 0002701418
Дата охранного документа: 26.09.2019
05.10.2019
№219.017.d2c3

Устройство для уплотнения снега

Изобретение относится к машинам для уплотнения снега при строительстве снеголедовых дорог и грунтовых аэродромов в зимнее время. Технический результат - повышение качества уплотнения снега и повышение эффективности работы вальца противоскольжения и всего устройства. В устройстве для уплотнения...
Тип: Изобретение
Номер охранного документа: 0002701955
Дата охранного документа: 03.10.2019
21.11.2019
№219.017.e43e

Динамический метод контроля тяги двигателей летательного аппарата в полете

Динамический метод контроля тяги двигателей летательного аппарата в полете заключающийся в том, что тяга двигателей летательного аппарата в полете определяется как произведение некоторой израсходованной массы топлива на отношение произведения горизонтального ускорения летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002706526
Дата охранного документа: 19.11.2019
27.02.2020
№220.018.0678

Способ измерения момента инерции асинхронного электрического двигателя

Изобретение относится к способам определения момента инерции электрических двигателей в процессе их испытаний. Сущность изобретения заключается в том, что на конец выходного вала асинхронного электрического двигателя поочередно устанавливаются два диска (первый и второй) одинаковой массы, но с...
Тип: Изобретение
Номер охранного документа: 0002715044
Дата охранного документа: 21.02.2020
+ добавить свой РИД