×
04.06.2019
219.017.7365

Результат интеллектуальной деятельности: Способ контроля динамической вязкости жидкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам контроля веществ, находящихся в жидком состоянии, и может быть использовано для автоматического измерения динамической вязкости жидкости. Способ контроля динамической вязкости жидкости при текущей температуре, в котором динамическая вязкость определяется произведением динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости. Техническим результатом является обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента. 1 ил.

Изобретение относится к приборам и методам контроля веществ, находящихся в жидком состоянии и может быть использовано для автоматического измерения динамической вязкости жидкости.

Известен способ измерения вязкости жидкости с помощью ротационного вискозиметра и устройство для его реализации (Вискозиметры автоматические ротационные ВАР-5М. Руководство по эксплуатации 5Ж2.842.008 РЭ). Способ заключается в приведении во вращательное движение с постоянной угловой скоростью вращающегося элемента, отделенного от воспринимающего элемента слоем контролируемой жидкости, и измерении момента вращения, действующего на воспринимающий элемент. При этом о вязкости контролируемой жидкости судят по значению момента вращения, действующего на воспринимающий элемент. Устройство содержит привод постоянной угловой скорости, укрепленный на его валу вращающийся элемент, воспринимающий элемент, который установлен на упругом элементе и измерительный преобразователь угла поворота воспринимающего элемента.

Недостатком известного способа является необходимость поддержания постоянной угловой скорости вращающегося элемента.

Технический результат - обеспечение возможности измерения вязкости жидкости на переменных скоростях движения вращающегося элемента.

Технический результат достигается тем, что способ контроля динамической вязкости жидкости, согласно изобретения, динамическая вязкость жидкости при текущей температуру равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости ко времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся приводной «электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.

Новизна заключается в том, что контроль динамической вязкости жидкости осуществляется за счет измерения угловой скорости вращающегося элемента, погруженного в жидкость при разных температурах.

Изобретение поясняется чертежом.

Приводной электродвигатель 1, угловая скорость ротора которого измеряется с помощью энкодера 2, соединен посредством вала 3 с вращающимся цилиндром 4, помещенным внутри неподвижного цилиндра 5, наполненного исследуемой жидкостью, температура которой определяется с помощью датчика температуры 6.

Реализуется предлагаемый динамический метод контроля динамической вязкости жидкости следующим образом.

На начальном этапе, когда вал 3 отсоединен от приводного электродвигателя 1, приводной электродвигатель 1 запускается в пределах от нуля до номинальной угловой скорости и на каждом этапе приращения угловой скорости определяется угловое ускорение:

(1)

где dω – изменение угловой скорости, с-1, dt1 – время за которое произошло изменение угловой скорости dω, с.

Для диапазона угловых скоростей от нуля до номинальной угловой скорости среднее значения углового ускорения в выражение (1) принимает вид:

(2)

где – номинальная угловая скорость вала электродвигателя, с-1, – время разгона электродвигателя в диапазоне от нуля до номинальной угловой скорости, с.

При этом среднее значение вращающего момента М, которое развивает приводной электродвигатель 1, определяется как:

(3)

где – коэффициент, характеризующий механические и добавочные потери в роторе электродвигателя, – приведенный к оси вращения ротора момент инерции вращающихся масс электродвигателя, кг м2.

Далее приводной электродвигатель 1 останавливается и к его ротору подсоединяется вал 3 и вращающийся цилиндр 4. Суммарный момент инерции вала 3 и присоединенному к нему вращающегося цилиндра 4 известен (может быть определен методом крутильных колебаний или расчетным методом) и равен .

Затем приводной электродвигатель 1 запускается и определяется значение углового ускорения системы вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», на каждом этапе приращения угловой скорости в пределах от нуля до номинальной угловой скорости:

(4)

Среднее значения углового ускорения при разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости, выражение (4) принимает вид:

(5)

где – время разгона приводного электродвигателя 1 от нуля до номинального угловой скорости, с.

Среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4» равно:

. (6)

Поскольку при первом и втором запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражения (3) и (6) можно приравнять и определить момент инерции вращающихся масс электродвигателя с учетом коэффициента потерь:

(7)

При разгоне приводного электродвигателя 1 от нуля до номинальной угловой скорости во время первого и второго запусков:

, (8)

а , (9)

Подставляя (8) и (9) в (7) получаем:

(10)

Далее для контроля динамической вязкости исследуемой жидкости, полностью заполняем пространство между вращающимся цилиндром 3 и неподвижным цилиндром 4 по уровню верхней кромки вращающегося цилиндра 3, определяем температуру исследуемой жидкости с помощью датчика температуры 6 и запускаем приводной электродвигатель 1.

При вращении вращающегося цилиндра 3 будет создаваться сила трения между вращающимся цилиндром 3 и исследуемой жидкостью, которая будет создавать момент трения. Тогда среднее значение вращающего момента М, который развивает система вращающихся масс «приводной электродвигатель 1, вал 3, вращающийся цилиндр 4», определится:

, (11)

где - момент трения, обуславливаемый вязкостью исследуемой жидкости,

- момент инерции сил трения, создаваемых вязкостью исследуемой жидкости.

Поскольку при первом, втором и третьем запуске потери в статоре и роторе приводного электродвигателя 1 остаются неизменными (так как не меняется напряжение, частота питающей сети и температура электродвигателя (сопротивление обмоток статора)), следовательно, в соответствие с энергетической диаграммой электродвигателя, механическая характеристика электродвигателя не меняется. Поэтому правые части выражений (6) и (11) приравниваем:

(12)

Из (12) с учетом (7), (8), (9), и :

(13)

Из (13) момент трения, обусловленный вязкостью жидкости:

(14)

Зная динамическую вязкость исследуемой жидкости при температуре определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости и вычислим момент трения :

(15)

Определим время разгона приводного электродвигателя от нуля до номинальной угловой скорости при температуре исследуемой жидкости и вычислим момент трения :

(16)

Соотношение динамических вязкостей исследуемой жидкости и при температурах и пропорционально соотношению крутящих моментов и :

(17)

Выделим из (17) искомый коэффициент динамической вязкости при температуре :

(18)

Способ контроля динамической вязкости жидкости отличающийся тем, что динамическая вязкость жидкости при текущей температуре равна произведению динамической вязкости жидкости при начальной температуре на отношение времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости к времени разгона системы «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости на отношение разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при текущей температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости и разности времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» при начальной температуре жидкости и времени разгона системы вращающихся масс «приводной электродвигатель-вал-вращающийся цилиндр» без жидкости.
Способ контроля динамической вязкости жидкости
Способ контроля динамической вязкости жидкости
Источник поступления информации: Роспатент

Показаны записи 111-120 из 138.
31.07.2020
№220.018.39d2

Устройство для получения арболита

Изобретение относится к строительству, в частности к смесительному оборудованию для производства арболита. Устройство для смешивания древесных частиц со связующим содержит корпус (1) с загрузочными (18) и выгрузочными окнами (20). Внутри корпуса размещен основной приводной вал (2) с планетарным...
Тип: Изобретение
Номер охранного документа: 0002728441
Дата охранного документа: 29.07.2020
31.07.2020
№220.018.3a0b

Станок для производства строганого шпона

Изобретение относится к деревообрабатывающей промышленности, в частности к станкам для изготовления строганого шпона. Станина (1) станка выполнена в виде коробчатого сечения с открытым внутренним пространством. Во внутреннем пространстве станины размещен механизм подъема (2), выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002728464
Дата охранного документа: 29.07.2020
01.08.2020
№220.018.3b04

Устройство для кольцевания деревьев

Изобретение предназначено для использования в лесном хозяйстве, а именно для ухода за насаждениями путем кольцевания ствола деревьев, подлежащих удалению. Устройство содержит раму, опирающуюся на ходовые колеса, в задней части которой жестко закреплена направляющая П-образной формы, а в...
Тип: Изобретение
Номер охранного документа: 0002728664
Дата охранного документа: 30.07.2020
01.08.2020
№220.018.3b17

Центробежный измельчитель

Изобретение относится к сельскохозяйственному машиностроению, в частности к машинам для измельчения фуражного зерна и других сыпучих материалов, используемых для кормления животных. Измельчитель содержит корпус 1, внутри которого установлены на одной оси сплошной 2 и полые 3 валы, причем полые...
Тип: Изобретение
Номер охранного документа: 0002728665
Дата охранного документа: 30.07.2020
01.08.2020
№220.018.3b18

Способ разработки лесосек с низкой несущей способностью грунтов

Изобретение относится к области лесной промышленности и может быть использовано при производстве лесосечных работ на лесосеках с низкой несущей способностью грунтов. Способ включает разделение лесосеки на пасеки, прокладку пасечного волока по середине пасеки для движения форвардера и харвестера...
Тип: Изобретение
Номер охранного документа: 0002728672
Дата охранного документа: 30.07.2020
05.08.2020
№220.018.3cbc

Автожир авиалесоохраны

Изобретение относится к области авиации, в частности к авиационным средствам тушения лесных пожаров. Автожир авиалесоохраны содержит фюзеляж, кабину пилота, ротор, шасси, хвостовое оперение. Фюзеляж имеет обтекаемую сигарообразную форму, внутри которого за кабиной пилота размещен...
Тип: Изобретение
Номер охранного документа: 0002728950
Дата охранного документа: 03.08.2020
06.08.2020
№220.018.3d7d

Мобильный ленточнопильный станок для продольной распиловки лесоматериалов

Изобретение относится к деревообрабатывающей промышленности, в частности к ленточнопильным станкам для продольной распиловки лесоматериалов. Ленточнопильный станок для продольной распиловки лесоматериалов включает пильный блок, раму, механизм зажима. Устройство снабжено основанием с шарнирно...
Тип: Изобретение
Номер охранного документа: 0002729099
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.477f

Способ измерения объема и определения плотности пористых материалов

Изобретение относится к технике измерения объемов и определения плотностей пористых тел произвольной формы, различной влажности, а также фракционного состава и может использоваться во всех областях исследования или применения пористых объектов. Способ заключается в том, что после взвешивания...
Тип: Изобретение
Номер охранного документа: 0002744281
Дата охранного документа: 04.03.2021
12.04.2023
№223.018.4800

Устройство для измерения объемов образцов древесины

Изобретение относится к измерительной технике, а именно к устройствам для измерения объемов образцов древесины произвольной формы. Устройство для измерения объемов образцов древесины включает отсчетное устройство, сосуд с эластичной пленкой и плоским дном, согласно изобретению отсчетное...
Тип: Изобретение
Номер охранного документа: 0002741900
Дата охранного документа: 29.01.2021
12.04.2023
№223.018.49e4

Способ и устройство для измерения объема и определения плотности пористых материалов

Изобретение относится к технике измерения объемов и определения плотностей пористых тел произвольной формы, различной влажности, а также фракционного состава и может использоваться во всех областях исследования или применения пористых объектов. Для осуществления способа применяют устройство,...
Тип: Изобретение
Номер охранного документа: 0002757167
Дата охранного документа: 11.10.2021
Показаны записи 1-6 из 6.
20.11.2014
№216.013.085b

Способ определения момента инерции цепной передачи

Изобретение относится к способам инерционных испытаний цепных передач и позволяет определить момент инерции цепной передачи. Сущность изобретения заключается в том, что к входному валу цепной передачи присоединяется выходной вал электрического двигателя и крепится тело с эталонным моментом...
Тип: Изобретение
Номер охранного документа: 0002533540
Дата охранного документа: 20.11.2014
10.04.2019
№219.017.03a5

Рамный каркас распределительного шкафа

Изобретение относится к рамным каркасам распределительных шкафов, содержащим горизонтальные и вертикальные рамные профили, и направлено на повышение герметичности внутреннего пространства распределительного шкафа. Рамный каркас распределительного шкафа содержит вертикальные и горизонтальные...
Тип: Изобретение
Номер охранного документа: 0002384285
Дата охранного документа: 20.03.2010
02.10.2019
№219.017.cc97

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор"

Метод динамического контроля эффективности прямого использования механической энергии в системе "приводной двигатель внутреннего сгорания - поршневой компрессор". Изобретение относится к приборам и методам контроля изделий машиностроения и может быть использовано для контроля эффективности...
Тип: Изобретение
Номер охранного документа: 0002701418
Дата охранного документа: 26.09.2019
05.10.2019
№219.017.d2c3

Устройство для уплотнения снега

Изобретение относится к машинам для уплотнения снега при строительстве снеголедовых дорог и грунтовых аэродромов в зимнее время. Технический результат - повышение качества уплотнения снега и повышение эффективности работы вальца противоскольжения и всего устройства. В устройстве для уплотнения...
Тип: Изобретение
Номер охранного документа: 0002701955
Дата охранного документа: 03.10.2019
21.11.2019
№219.017.e43e

Динамический метод контроля тяги двигателей летательного аппарата в полете

Динамический метод контроля тяги двигателей летательного аппарата в полете заключающийся в том, что тяга двигателей летательного аппарата в полете определяется как произведение некоторой израсходованной массы топлива на отношение произведения горизонтального ускорения летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002706526
Дата охранного документа: 19.11.2019
27.02.2020
№220.018.0678

Способ измерения момента инерции асинхронного электрического двигателя

Изобретение относится к способам определения момента инерции электрических двигателей в процессе их испытаний. Сущность изобретения заключается в том, что на конец выходного вала асинхронного электрического двигателя поочередно устанавливаются два диска (первый и второй) одинаковой массы, но с...
Тип: Изобретение
Номер охранного документа: 0002715044
Дата охранного документа: 21.02.2020
+ добавить свой РИД