×
24.05.2019
219.017.6065

СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА АЛЬФА-ОКСИДА АЛЮМИНИЯ С УЗКИМ РАСПРЕДЕЛЕНИЕМ ЧАСТИЦ ПО РАЗМЕРАМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002409519
Дата охранного документа
20.01.2011
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химии и используется для получения оксида алюминия. Соль - предшественник оксида алюминия вместе с затравочными частицами альфа-оксида алюминия размером не более 25 нм подвергают механохимической обработке в мельнице, полученную смесь добавляют в водный раствор этой же соли. Из полученного раствора осаждают аммиаком гель, сушат и обжигают его при температуре 800-930°С. Полученный альфа-оксид алюминия подвергают размолу в органической жидкости или в водном растворе, содержащем органическое связующее, сушке на воздухе при комнатной температуре. В качестве затравки используют альфа-оксид алюминия, полученный с помощью механохимического синтеза. В качестве органической жидкости используют ацетон, спирт или толуол, а в качестве органического связующего - поливиниловый спирт. Полученный альфа-оксид алюминия гранулируют путем протирания его через сито. Изобретение позволяет получать слабоагрегированные нанопорошки альфа-оксида алюминия с узким распределением частиц по размерам. 5 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к способам получения порошка из слабоагрегированных наноразмерных частиц альфа-оксида алюминия, имеющих средний размер от 45 до 60 нм и удельную поверхность около 30-35 м2/г.

Задача изготовления наноразмерного альфа-оксида алюминия стоит вот уже в течение длительного времени. Ключом к решению этой задачи является предотвращение быстрого роста зерен, вызванного высокой температурой перехода промежуточных модификаций в стабильную альфа-фазу. Хорошо известно, что температуру перехода можно снизить при использовании затравки, вводимой в кристаллизующиеся алюмогидроксидные гели. В водный раствор, содержащий ионы алюминия обычно добавляют несколько процентов по весу затравки из альфа-оксида алюминия в виде мелких частиц, чтобы создать условия для осуществления фазового превращения при более низкой температуре. Золь сушат на воздухе ориентировочно при 100-150°С, преобразуя в сухой гель, а затем обжигают при температуре, ориентировочно выше 1000°С, чтобы получить частицы из альфа-оксида алюминия. Известно также, что чем меньше размер частиц затравки, тем меньше будет температура кристаллизации. За счет наличия затравочных частиц температура преобразования снижается, ориентировочно от температур в диапазоне от 1200 до 1250°С для золей, приготовленных без затравки, до температур в диапазоне от 1000 до 1050°С. Приготовленный таким образом альфа-оксид алюминия может иметь субмикронные размеры частиц. Отсутствие на рынке нанопорошков альфа-оксида алюминия с размером менее 100 нм обусловлено тем, что не удается снизить температуру далее и получить размер продукта кристаллизации менее 0,15-0,25 мкм. Процесс последующего размалывания образовавшихся при 1000-1050°С достаточно прочных частиц приводит к высокому уровню загрязнения примесями и, кроме того, малоэффективен.

Известен способ получения зерен и волокон из альфа-оксида алюминия из бемита, который пептизируют, а затем диспергируют в воде с образованием золя оксида алюминия. Полученный золь быстро охлаждают в жидком азоте или, альтернативно, медленно охлаждают при помощи сублимационной сушки. Вода сублимируется из золя с образованием из него геля, содержащего чешуйки, хлопья, имеющие толщину, ориентировочно, от 1 до 3 мкм. При помощи данного способа могут быть получены более мелкие порошки, чешуйки, волокна и зерна из оксида алюминия, однако данные порошки не имеют пористости, а для их размола требуется высокая механическая энергия, причем процесс размалывания приводит к высоким уровням загрязнения примесями продукта из альфа-оксида алюминия (1. Пат. US №5312791, опубл. 17.05.1994 г.).

Известен способ получения нанокорундовых порошков с помощью затравочных наночастиц диаспора (2. DE №19922492, опубл. 16.11.2000 г.). Использование затравочных наночастиц диаспора позволило получить порошок, состоящий на 90% из нанопорошка альфа-оксида алюминия с размером частиц в интервале 25-60 нм. Этот порошок затем размалывали в водной среде.

Недостатком данного способа является невозможность полной дезагрегации его при размоле в водной среде. Около 25% порошка приходилось затем отцентрифугировать. Кроме того, диаспор получают синтетическим путем с помощью дорогостоящего гидротермального синтеза, что не позволяет использовать данный способ для получения корундовой керамики из-за дороговизны.

Наиболее близким техническим решением, выбранным за прототип, является способ приготовления нанопористых сверхмелких порошков из альфа-оксида алюминия, включающий использование геля, содержащего, по меньшей мере, один предшественник оксида алюминия и затравочные частицы из альфа-оксида алюминия, причем затравочные частицы имеют средний размер преимущественно меньше 100 нм, сушку геля и его обжиг при температуре 750-950°С (3. RU 2302374, опубл. 10.07.2007 г.).

Недостатком данного технического решения является то, что в качестве затравочных частиц использовали размолотый в воде грубодисперсный порошок альфа-оксида алюминия. Известно, что этот метод не позволяет получать изолированные частицы размером менее 100 нм, связан с высоким уровнем износа мелющих тел, а частицы порошка находятся в сильноагрегированном состоянии. Использование такой затравки позволило авторам этого технического решения получить лишь продукт с широким распределением частиц по размерам и при использовании большого (до 15% по отношению к получаемому порошку) количества затравки. Такой порошок не пригоден для формования и низкотемпературного спекания наноструктурного материала.

Задача, решаемая заявляемым техническим решением, заключается в получении слабоагрегированного нанопорошка альфа-оксида алюминия с узким распределением частиц по размерам, а именно от 45 до 60 нм, и удельной поверхностью 32-33 м2/г, пригодного для формования и низкотемпературного спекания плотных наноструктурных материалов.

Поставленная задача решается благодаря тому, что в заявляемом способе получения нанопорошка альфа-оксида алюминия, включающем осаждение геля оксида алюминия из раствора, содержащего, по меньшей мере, один предшественник оксида алюминия и затравочные частицы из альфа-оксида алюминия, сушку, обжиг высушенного геля, соль предшественника оксида алюминия вместе с затравочными частицами альфа-оксида алюминия размером не более 25 нм в количестве 10-70 мас.% по отношению к соли предшественника оксида алюминия, подвергают механохимической обработке в мельнице, полученную смесь добавляют в водный раствор этой же соли так, чтобы отношение количества затравки к количеству сухой соли составляло 0,1-0,6 мас.%, затем из раствора аммиаком осаждают гель, после сушки и обжига полученный альфа-оксид алюминия подвергают размолу в органической жидкости или в водном растворе, содержащем органическое связующее и высушивают на воздухе при комнатной температуре.

Предпочтительно, в качестве затравки используют механохимически синтезированный слабоагрегированный порошок альфа-оксида алюминия.

Предпочтительно, высушенный гель обжигают при температуре 800-930°С.

Предпочтительно, полученный после обжига гель подвергают размолу в ацетоне, спирте или толуоле.

Предпочтительно, полученный после обжига гель подвергают размолу в водном растворе поливинилового спирта.

В предлагаемом изобретении в качестве затравки используют механохимически синтезированный слабоагрегированный порошок альфа-оксид алюминия с размером частиц не более 25 нм [4. Karagedov and N.Z.Lyakhov, "Mechanochemical Grinding of Inorganic Oxides" KONA Powder and Particle, 21 (2003) 76-87]. Столь малый размер частиц позволяет использовать меньшее количество затравки (1-4% по отношению к получаемому порошку, но при этом значительно увеличить число центров кристаллизации альфа-фазы, тем самым уменьшив разброс порошка продукта по размерам. Этот порошок в количестве 10-70 мас.% по отношению к массе соли предшественника оксида алюминия (нитрат, сульфат, хлорид) подвергают механохимической обработке в мельнице, в результате чего происходит полная дезагрегация нанопорошка альфа-оксида алюминия на отдельные равномерно распределенные по предшественнику частицы, следствием чего является дополнительный рост числа центров кристаллизации. Полученную смесь добавляют в водный раствор этой же соли так, чтобы отношение количества затравки к количеству сухой соли составляло 0,1-0,6 мас.%. После осаждения геля аммиаком, его сушки, обжига и размола в органической жидкости или в водном растворе органического связующего получают нанопорошок альфа-оксида алюминия с очень узким распределением частиц по размерам, где практически полностью отсутствуют частицы как менее 40 нм, так и более 60 нм. Из полученного порошка альфа-оксида алюминия можно непосредственно формовать изделия сухим одноосным или изостатическим прессованием и спекать его до плотности более 97% при 1300°С, следствием чего является сохранение среднего размера зерна в нанодиапазоне и повышение механических свойств керамического изделия.

Для облегчения последующего формования нанопорошка после размола в органической жидкости или в водном растворе органического связующего полученную массу можно протирать через сито с размером ячеек 100-600 мкм, что приводит к грануляции, повышая сыпучесть и исключая пыление. Но это необходимо не всегда.

Существенными отличительными признаками заявляемого технического решения являются:

- использование затравки альфа-оксида алюминия размером не более 25 нм;

- размол сухой соли предшественника с затравкой альфа-оксида алюминия, взятой в количестве 10-70 мас.% по отношению к сухой соли предшественника оксида алюминия;

- добавление полученной смеси в водный раствор этой же соли так, чтобы отношение количества затравки к количеству сухой соли составляло 0,1-0,6 мас.%;

- размол полученного альфа-оксид алюминия в органической жидкости или в водном растворе, содержащем органическое связующее;

- сушка порошка на воздухе при комнатной температуре.

Совокупность существенных отличительных признаков позволяет решить поставленную задачу и не известна из существующего уровня техники.

Заявляемое техническое решение подтверждается приведенными ниже примерами.

Пример 1.

2.2 г нанопорошка α-Al2O3 с средним размером частиц 20 нм, полученного по методу, описанному в [4], смешали с 3.5 г нитрата алюминия и подвергли механической обработке в планетарной мельнице АГО-2М при ускорении 10 g в течение 15 минут используя шары и барабаны из диоксида циркония. Полученную смесь при перемешивании добавили в раствор, содержащий 370 г нитрата алюминия {Al(NO3)3·9H2O}. Затем при непрерывном перемешивании постепенно добавляли 25% раствор аммиака до образования геля. Гель высушивали при 200°С на воздухе, а затем прокаливали при 800-850°С в течение 30 минут. Полученный порошок подвергали мягкому размолу на шаровой мельнице в полимерном барабане шарами из диоксида циркония с добавлением 50 вес.% ацетона. После испарения ацетона рентгенофазовый анализ показывает, что полученный порошок представляет собой α-Al2O3 с размером кристаллитов 50-55 нм. Удельная поверхность порошка составляет 32-33 м2/г. Электронная микроскопия показывает, что порошок состоит из отдельных округлых частиц с размерами от 45 до 60 нм, а динамическое светорассеяние в водной суспензии указывает на средний размер 50 нм. Порошок прессуется при давлении 5 т/см2 до плотности 2,4 г/см3 и спекается при температуре 1300°С до плотности 3,86-3,89 г/см3.

Пример 2.

2.2 г нанопорошка альфа-оксида алюминия со средним размером частиц 50 нм, полученного по методу, описанному в [4], смешали с 3.5 г нитрата алюминия и подвергли механической обработке в планетарной мельнице АГО-2М при ускорении 10g в течение 15 минут, используя шары и барабаны из диоксида циркония. Полученную смесь при перемешивании добавили в раствор, содержащий 370 г нитрата алюминия {Al(NO3)3·9H2O}. Затем при непрерывном перемешивании постепенно добавляли 25% раствор аммиака до образования геля. Гель высушивали при 200°С на воздухе, а затем прокаливали при 850-875°С в течение 30 минут. Полученный порошок подвергали мягкому размолу на шаровой мельнице в полимерном барабане шарами из диоксида циркония с добавлением 50 вес.% ацетона. После испарения ацетона рентгенофазовый анализ показывает, что полученный порошок представляет собой альфа-оксида алюминия с размером кристаллитов 80-90 нм. Удельная поверхность порошка составляет 18-19 м2/г.

Пример 3.

0.5 г нанопорошка альфа-оксида алюминия со средним размером частиц 20 нм, полученного как в примере 1 смешали с 3.5 г нитрата алюминия и подвергли механической обработке в планетарной мельнице АГО-2М при ускорении 10g в течение 15 минут, используя шары и барабаны из диоксида циркония. Полученную смесь при перемешивании добавили в раствор, содержащий 370 г нитрата алюминия {Al(NO3)3·9H2O}. Затем при непрерывном перемешивании постепенно добавляли 25% раствор аммиака до образования геля. Гель высушивали при 200°С на воздухе, а затем прокаливали при 800-850°С в течение 30 минут.

Рентгенофазовый анализ показал, что порошок примерно на 80% состоит из альфа-оксида алюминия со средним размером частиц 50-55 нм и на 20% из θ-Al2O3. Электронная микроскопия показала наличие отдельных округлых частиц размерами в интервале 40-60 нм и некоторое количество очень мелких частиц примерно в 10 раз меньшего размера. При увеличении температуры прокалки количество альфа-оксида алюминия уменьшается и наконец при 930°С получается 100% альфа-оксида алюминия. После размола порошка в ацетоне, как в примере 1, получается продукт, полностью идентичный примеру 1. Таким образом, при уменьшении количества затравки происходит повышение температуры кристаллизации альфа-фазы, но это не сказывается на размере порошка после его размола в ацетоне.

Пример 4.

Процедура идентична примеру 1, но в качестве органической жидкости используется этиловый или изопропиловый спирт. Результат полностью аналогичен п.1, однако при спекании сформованного из порошка тела при 1300°С в этом случае достигается плотность 3.8 г/см3.

Пример 5.

Процедура идентична примеру 1, но размол прокаленного порошка проводится в 1% водном растворе поливинилового спирта. Полученный порошок подсушивается на воздухе и протирается через сито 0.25 мм. В результате получается гранулированный порошок, гранулы которого состоят из первичных частиц размером 40-60 нм. Этот порошок прессуется до плотности 2.1 г/см2 при давлении 2.7 т/см3 и спекается при температуре 1300°С до плотности 3.74-3.76 г/см3.

Как показывают примеры, заявляемый способ по сравнению с прототипом позволяет получить нанопорошок альфа-оксида алюминия со значительно более узким распределением слабоагрегированных частиц по размерам, используя при этом существенно меньшие количества дорогостоящей затравки. Получаемый порошок, в отличие от прототипа, может быть непосредственно использован для получения плотной наноструктурной керамики из оксида алюминия.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.01.2015
№216.013.17ad

Способ получения нитрида алюминия

Изобретение относится к порошковой технологии, в частности к получению мелкодисперсного порошка нитрида алюминия, имеющего широкое применение в радиотехнической и электронной промышленности в качестве основного компонента теплопроводящих паст и материала для изготовления керамических подложек...
Тип: Изобретение
Номер охранного документа: 0002537489
Дата охранного документа: 10.01.2015
29.05.2019
№219.017.6594

Способ получения нанодисперсного порошка альфа-оксида алюминия

Изобретение относится к области химии и может быть использовано при получении нанодисперсного порошок α-оксида алюминия. Проводят измельчение α-оксида алюминия в планетарной мельнице стальными шарами размером не более 5 мм при ускорении 20-40 g в течение 20-40 мин. Измельченный α-оксид алюминия...
Тип: Изобретение
Номер охранного документа: 0002392226
Дата охранного документа: 20.06.2010
Показаны записи 1-10 из 17.
10.08.2013
№216.012.5d69

Способ получения нанокристаллического кремний-замещенного гидроксилапатита

Изобретение относится к области химии, а именно к механохимическим способам получения нанокристаллического кремний-замещенного гидроксилапатита, являющегося биологически активным материалом, который может быть использован для покрытия металлических и керамических имплантатов, в качестве...
Тип: Изобретение
Номер охранного документа: 0002489534
Дата охранного документа: 10.08.2013
10.10.2014
№216.012.fd9a

Устройство для временной блокировки сотовых телефонов

Изобретение относится к технике противодействия коммерческому и промышленному шпионажу и предназначено для предотвращения аудио- и видеозаписи и несанкционированного прослушивания конфиденциальных переговоров с помощью сотовых телефонов в режиме удаленного доступа. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002530768
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe11

Способ получения висмут-калий-аммоний цитрата

Изобретение относится к способам переработки висмутсодержащих материалов, а именно к способу получения висмут-калий-аммоний цитрата. Способ включает осаждение висмута нитрата основного из нитратных растворов при pH 0,5-1,2, перевод его в висмут цитрат при обработке водным раствором лимонной...
Тип: Изобретение
Номер охранного документа: 0002530897
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.17ad

Способ получения нитрида алюминия

Изобретение относится к порошковой технологии, в частности к получению мелкодисперсного порошка нитрида алюминия, имеющего широкое применение в радиотехнической и электронной промышленности в качестве основного компонента теплопроводящих паст и материала для изготовления керамических подложек...
Тип: Изобретение
Номер охранного документа: 0002537489
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2e86

Способ и устройство для утилизации углеводородных отходов

Изобретение относится к переработке углеводородных отходов. Изобретение касается способа утилизации углеводородных отходов, включающего радиолиз углеводородов в проточном радиационно-химическом реакторе, накопление продуктов радиолиза в камере накопления, отвод легких углеводородных фракций из...
Тип: Изобретение
Номер охранного документа: 0002543378
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.37e5

Композиция на основе албендазола с противоописторхозной фармакологической активностью

Изобретение относится к композиции на основе албендазола. Указанная композиция состоит из субстанции албендазола и полисахарида арабиногалактана из лиственницы сибирской или Гмелина при массовых соотношениях компонентов албендазол : арабиногалактан 1:5-20. Заявленное изобретение обладает более...
Тип: Изобретение
Номер охранного документа: 0002545797
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ac7

Противопаразитарное средство на основе альбендазола и способ его использования для лечения гельминтозов млекопитающих

Группа изобретений относится к области ветеринарии и медицины, в частности к лечению кишечных гельминтозов млекопитающих. Противопаразитарное средство, включающее межмолекулярные комплексы альбендазола с водорастворимыми физиологически приемлемыми полимерами, причем массовые соотношения...
Тип: Изобретение
Номер охранного документа: 0002546535
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.6033

Способ получения порошкообразной меди, модифицированной серебром

Изобретение относится к способам получения композитного медно-серебряного нанопорошка, который используется в качестве электропроводящего материала в чернилах, пастах, клеях, катализаторах, полимерных и металлокерамических композитах. Способ включает восстановление модифицирующего металла -...
Тип: Изобретение
Номер охранного документа: 0002556168
Дата охранного документа: 10.07.2015
20.12.2015
№216.013.9a67

Радиационно-термический способ получения пека-связующего для производства электродов

Изобретение может быть использовано в электродной промышленности. Способ получения пека-связующего для электродных материалов включает разогрев каменноугольного пека до температуры выше 150°C. Полученный поток жидкотекучего каменноугольного пека подвергают облучению пучком электронов с дозой...
Тип: Изобретение
Номер охранного документа: 0002571152
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.cf4d

Способ получения ацетилена из метана

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислородсодержащего газа и катализатора, нагреваемого до температуры 750-1200°C путем пропускания через него электрического тока. Способ характеризуется тем, что в качестве катализатора используют...
Тип: Изобретение
Номер охранного документа: 0002575007
Дата охранного документа: 10.02.2016
+ добавить свой РИД