×
24.05.2019
219.017.5ed0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДОРОЖНОГО БИТУМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтепереработки, в частности к способу получения дорожного битума марки БНД 70/100 по ГОСТ 33133-2014. Способ получения дорожного битума включает окисление композиции из утяжеленного гудрона, полученного из смеси нефтей «Юралс» с показателем вязкости ВУ более 150-220 с и затемненного вакуумного погона в концентрации последнего 20 мас.%, при температуре 220-240°С до температуры размягчения от 55 до 59°С, и последующее компаундирование с нефтяными остаточными неокисленными продуктами, в качестве которых используют затемненный вакуумный погон в концентрации 17-25 мас.%. Битум БНД 70/100, полученный способом по изобретению, соответствует по своим физико-механическим свойствам стандарту ГОСТ 33133-2014 и обладает улучшенной растяжимостью и пенетрацией при 0°С. 1 табл.

Изобретение относится к области нефтепереработки, в частности к способу получения дорожного битума марки БНД 70/100 по ГОСТ 33133-2014 «Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Технические требования».

Данный стандарт введен в 2016 г. и отличается от ГОСТ 22245-90 «Битумы нефтяные дорожные вязкие» ужесточением требований по ряду нормируемых показателей, а также введением дополнительных параметров качества битума.

В то же время на многих современных нефтеперерабатывающих предприятиях наблюдается тенденция к увеличению глубины отбора дистиллятных фракций из мазута при вакуумной перегонке с целью увеличения глубины переработки нефти. Это, в свою очередь, приводит к существенному повышению вязкости получаемого гудрона, который, согласно многочисленным исследованиям, не является оптимальным сырьем для производства битумов окислением. Дорожные вяжущие на базе подобного сырья зачастую характеризуются пониженными значениями растяжимости при 0°С и пенетрации при 0°С, а также повышенной температурой хрупкости.

Известен способ получения битума, включающий окисление утяжеленного гудрона, при этом получение битума проводят в одну стадию, используя в качестве сырья гудрон с показателями условной вязкости ВУ80 в интервале 92-158 с, и окисление проводят кислородом воздуха при температуре 215-230°С. (Патент РФ №2630560, 2016).

Недостатком данного способа является малая растяжимость при 0°С получаемого дорожного вяжущего.

Для оптимизации состава сырья получения окисленных битумов возможно добавление в его состав различных высококипящих нефтепродуктов, в частности затемненного вакуумного погона (металлизированной вакуумной фракции, слопа).

Известен способ получения битума, включающий вакуумную перегонку мазута с получением гудрона, смешение полученного гудрона с сырьевыми органическими добавками, представляющими собой концентраты полиароматических углеводородов и смол нефтяного происхождения, окисление полученной смеси кислородом воздуха при повышенной температуре и избыточном давлении, при этом вакуумную перегонку мазута проводят с получением сверхтяжелого гудрона с условной вязкостью 180-230 с при 80°С с содержанием парафино-нафтеновых углеводородов не более 18 мас. %, далее производят смешение сверхтяжелого гудрона с сырьевыми органическими добавками с получением сырьевой композиции с условной вязкостью 60-110 с при 80°С, содержащей не менее 50 мас. % ароматических углеводородов и имеющей соотношение смол к асфальтеновым углеводородам не ниже, чем 8:3 мас. долей. Изобретение обеспечивает получение битумов дорожных марок с содержанием твердого парафина не более 2,2 мас. %, с повышенными показателями растяжимости и термоокислительной стабильности. (Патент РФ №2458965, 2011).

Недостатком данного способа является ограничения по применению малопарафинистого гудрона и высокоароматизированной добавки в сырье. В качестве последней в патенте предлагается использование экстракта селективной очистки остаточных масел и асфальта деасфальтизации, однако не все нефтеперерабатывающие заводы имеют в своем составе установки пропановой деасфальтизации гудрона и селективной очистки остаточных масел. Применение же парафинистого гудрона и затемненного вакуумного погона приводит к малой растяжимости при 0°С получаемого окисленного битума.

Известен способ получения битума, включающий вакуумную перегонку мазута при остаточном давлении верха колонны 30-50 мм рт.ст. с получением тяжелого гудрона, по крайней мере 70% которого смешивают с органическими добавками до достижения его условной вязкости 40-120 с при 80°С и глубины проникновения иглы при 25°С 400-480 0,1 мм. Смесь подвергают окислению. В целевой продукт можно вводить до 30 мас. % утяжеленного гудрона. В качестве органических добавок используют концентраты полиароматических углеводородов. (Патент РФ №2153520, 2000).

Недостатком данного способа является малая растяжимость при 0°С окисленного битума, полученного при использовании в качестве основы сырьевой смеси сверхтяжелых гудронов с условной вязкостью при 80°С более 200 с.

Известен способ получения битума, включающий окисление смеси остаточных продуктов переработки нефти - смеси гудрона (фракция 500 - к.к.°С), асфальта, получаемого после деасфальтизации пропаном остатка (580- к.к.°С) от глубокой вакуумной перегонки мазута и дополнительно отбираемой дистиллятной фракции (480-610°С) - слопа в пропорции (мас. %) не более 40/40 - 60/20 - 50 соответственно. Способ позволяет повысить пластичность битума, повысить индекс пенетрации битума, понизить температуру хрупкости битума по Фраасу. (Патент РФ №2120461, 1997).

Недостатком данного способа является необходимость использования асфальта деасфальтизации гудрона, имеющегося не на каждом нефтеперерабатывающем предприятии. Помимо этого, применение в качестве основы композиции утяжеленного гудрона без добавления асфальта деасфальтизации не обеспечивает требуемой растяжимости при 0°С окисленного битума.

Обеспечение улучшенного комплекса характеристик дорожного вяжущего возможно с использованием метода компаундирования окисленных битумов и неокисленных нефтепродуктов (в частности исходного высоковязкого гудрона или затемненного вакуумного погона).

Известен способ получения битума, включающий окисление утяжеленного гудрона с условной вязкостью при 80°С от 60 до 200 с с получением строительных битумов с температурой размягчения не ниже 90°С и последующее компаундирование полученного окисленного продукта с исходным сырьем - утяжеленным гудроном - с получением дорожных битумов. (Патент РФ №2258730, 2004). В способе рекомендуется также для повышения пластичности и морозостойкости конечного продукта добавление нефтяной фракции, выкипающей в пределах 450-480°С в количестве 5-15 мас. % на смесь.

Недостатком данного способа необходимость глубокого окисления сырья и ограниченная возможность применения сверхтяжелых гудронов с условной вязкостью при 80°С более 200 с. В случае использования сверхтяжелых гудронов не обеспечивается требуемая растяжимость при 0°С полученного битума.

Известен способ получения битума, включающий вакуумную перегонку мазута при остаточном давлении верха колонны 20-30 мм рт.ст. с получением утяжеленного гудрона с последующим разделением полученного утяжеленного гудрона на два потока, окислением части потока кислородом воздуха при температуре 220-230°С с получением продукта, характеризующегося глубиной проникания иглы при 25°С 35-45 0,1 мм. Далее выполняют компаундирование окисленного продукта со второй частью утяжеленного гудрона в соотношении от 90:10 до 70:30 до получения продукта с глубиной проникания иглы при 25°С 40-200 0,1 мм. (Патент РФ №2476580, 2010).

Недостатком данного способа является малая растяжимость при 0°С компаундов, полученных при использовании в качестве основы сверхвысоковязких гудронов с условной вязкостью при 80° более 150 с.

Известен способ получения битума, включающий смешение окисленного битума, полученного путем окисления при повышенной температуре остаточных продуктов переработки нефти, и неокисленных остаточных нефтепродуктов. Согласно способу первоначально готовят смесь гудрона и слопа или гудрона и битума перемешиванием в течение 10-15 мин при температуре 120-140°С. Далее полученную смесь смешивают с окисленным битумом или слопом в соответствии с составом в течение 20-25 мин при следующем соотношении компонентов, мас. %: гудрон 0,5-16, слоп 1-18, окисленный битум - остальное до 100. Слои - дистиллятная фракция из гудрона с интервалом кипения 480-610°С, отбираемая при глубоком вакууме 10-20 мм рт.ст. Гудрон имеет температуру размягчения 20°С. (Патент РФ №2186078, 2001).

Недостатком данного способа является недостаточная растяжимость при 0°С компаунда при использовании для окисления и компаундирования высоковязких гудронов с температурой размягчения не ниже 30°С.

Известен способ получения битума, включающий смешение окисленного битума с нефтяными остаточными неокисленными нефтепродуктами при повышенной температуре. В качестве остаточных не окисленных нефтепродуктов используют гудрон - фракцию 500°С - конец кипения, дистиллятную фракцию 480-610°С - слоп и экстракт селективной очистки остаточной масляной фракции при следующем соотношении компонентов, мас. %: гудрон - 1-5, слоп - 4-20, экстракт - 5-25, окисленный битум - остальное смешивают до 100. Компоненты смешивают в последовательности гудрон, слоп, экстракт и к полученной 3х-компонентной смеси добавляют окисленный битум. Изобретение позволяет повысить качество производимого битума за счет снижения температуры хрупкости по Фраасу, повышения индекса пенетрации и адгезии к каменным материалам и расширить ассортимент получаемых товарных битумов. (Патент РФ №2302447, 2006).

Недостатком данного способа является необходимость использования экстракта селективной очистки остаточных масел, что невозможно при отсутствии производства масел на предприятиях. Применение же в качестве основы для компаундирования окисленного битума, полученного на базе утяжеленного гудрона, не обеспечивает требуемой растяжимости при 0°С компаунда если в его составе присутствует только затемненный вакуумный погон и отсутствует экстракт селективной очистки.

Наиболее близким к предлагаемому является способ получения битума, включающий окисление сырья битумного с условной вязкостью при 80°С 60÷100 с с получением глубокоокисленного продукта с температурой размягчения в интервале 80÷110°С с последующим его компаундированием с прямогонным гудроном с условной вязкостью при 80°С не менее 60 с в концентрации 45-60 мас. % с получением целевого дорожного битума с уровнем эластичности не менее 35%, т.е. повышенной долговечности. (Патент РФ №2552468, 2014). Согласно способу в качестве сырья битумного может применяться смесь гудрона и затемненного вакуумного погона.

Недостатком данного способа является необходимость глубокого окисления битумного сырья и недостаточная растяжимость при 0°С компаунда при использовании в качестве неокисленной части только высоковязких гудронов.

Задачей предлагаемого изобретения является разработка способа получения дорожного битума марки БНД 70/100, полностью соответствующего по показателям качества нормам ГОСТ 33133-2014 «Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Технические требования».

Поставленная задача решается способом получения дорожного битума, который включает окисление сырья битумного при повышенной температуре и последующее компаундирование его с нефтяными остаточными неокисленными продуктами, согласно предлагаемому изобретению, в качестве сырья битумного используют композицию из утяжеленного гудрона, полученного из смеси нефтей «Юралс» с показателем вязкости ВУ80 более 150-220 с и затемненного вакуумного погона в концентрации последнего 20 % мас., окисление проводят при температуре 220-240°С до температуры размягчения не ниже 55°С, а для компаудирования в качестве нефтяных остаточных неокисленных продуктов используют затемненный вакуумный погон в концентрации 17-25 % мас.

Известно, что окисление тяжелого сырья при сниженных температурах обеспечивает получение битумов с улучшенным комплексом характеристик, поэтому опыты проводились при температурах окисления 220-240°С.

Окисление композиции утяжеленного гудрона и затемненного вакуумного погона осуществляли в лабораторной установке, представляющей собой круглодонную трехгорлую колбу объемом 2 дм3, установленную на колбонагреватель. В два горла колбы вставлялись две трубки с оттянутым концом для ввода воздуха. В третье помещался термометр и мешалка.

Сырье в количестве 1200 г помещали в колбу, и далее колбу нагревали в сушильном шкафу при температуре 180°С в течение 1 часа. После этого колбу перемещали на колбонагреватель, устанавливали термометр и мешалку, и колбонагревателем доводили температуру гудрона до необходимой. Температура в колбе поддерживалась с точностью до ±2°С. Расход воздуха поддерживался в объеме 4 дм3/мин (или 0,2 м3/ч кг гудрона). При этом периодически проводились анализы окисляемого гудрона на температуру размягчения по КиШ.

При достижении температуры размягчения по КиШ требуемого значения прекращали подачу воздуха и полученный образец окисленного гудрона использовали для дальнейшего компаундирования с чистым неокисленным затемненным вакуумным погоном.

Компаундирование вели путем нагрева до 150°С исходного окисленного битумного сырья, введения в него неокисленного нефтепродукта и последующего перемешивания в емкости с мешалкой в течение 30 мин.

Данное изобретение подтверждается следующими примерами.

Пример 1 (сравнительный)

Получение битума вели по способу, описанному в патенте РФ №2630560.

В качестве сырья окисления использовался промышленный гудрон со следующими показателями:

Условная вязкость при 80°С - 219 с;

Температура размягчения по КиШ - 39,8°С;

Плотность при 20°С - 1022,5 кг/м3.

Окисление вели до температуры размягчения продукта 47-49°С. Температура окисления составляла 230°С. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателям растяжимости при 0°С (0,2 см при норме не менее 3,7 см), пенетрации при 25°С (64⋅0,1 мм при норме не менее 71⋅0,1 мм) и температуре хрупкости (минус 16°С при норме не более минус 18°С).

Пример 2 (сравнительный)

Получение битума вели по способам, описанным в патентах РФ №2458965, №2153520 и №2120461 (последний способ реализован без введения в сырье асфальта деасфальтизации).

В качестве сырья окисления использовалась смесь, состоящая из 80 масс. % промышленного гудрона (свойства приведены в примере 1) и 20 масс. % затемненного вакуумного погона. Затемненный вакуумный погон имел следующие характеристики:

Условная вязкость при 80°С - 11 с;

Плотность при 20°С - 975,1 кг/м3.

Полученная сырьевая смесь имела условную вязкость при 80°С 76 с. Окисление вели до температуры размягчения продукта 47-49°С. Температура окисления составляла 230°С. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателям растяжимости при 0°С (0,5 см при норме не менее 3,7 см) и пенетрации при 25°С (68⋅0,1 мм при норме не менее 71⋅0,1 мм).

Пример 3 (сравнительный)

Получение битума вели по способу, описанному в патенте №2258730.

В качестве сырья окисления использовался промышленный гудрон (свойства приведены в примере 1). Окисление вели до температуры размягчения продукта 90-95°С. Температура окисления составляла 230°С.

Полученный окисленный битум имел температуру размягчения 94,2°С.

Далее полученный окисленный битум смешивали с исходным гудроном и затемненным вакуумным погоном (свойства приведены в примере 2) в соотношении по массе 25:65:10 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателю растяжимости при 0°С (0,4 см при норме не менее 3,7 см).

Пример 4 (сравнительный)

Получение битума вели по способу, описанному в патенте №2476580.

В качестве сырья окисления использовался промышленный гудрон (свойства приведены в примере 1). Окисление вели до температуры размягчения продукта 53-56°С. Температура окисления составляла 230°С.

Полученный окисленный битум имел температуру размягчения 54,8°С и пенетрацию при 25°С равную 36 0,1 мм.

Далее полученный окисленный битум смешивали с исходным гудроном в соотношении по массе 70:30 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателям растяжимости при 0°С (0,2 см при норме не менее 3,7 см) и пенетрации при 25°С (65⋅0,1 мм при норме не менее 71⋅0,1 мм).

Пример 5 (сравнительный)

Получение битума вели по способу, описанному в патенте №2186078.

В качестве окисленной части компаунда использовали окисленный промышленный гудрон (свойства приведены в примере 1). Полученный окисленный битум имел температуру размягчения 56,2°С

Далее полученный окисленный битум смешивали с исходным гудроном и затемненным вакуумным погоном (свойства приведены в примере 2) в соотношении по массе 70:15:15 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателям растяжимости при 0°С (0,2 см при норме не менее 3,7 см) и пенетрации при 25°С (61⋅0,1 мм при норме не менее 71⋅0,1 мм).

Пример 6 (сравнительный)

Получение битума вели по способу, описанному в патенте №2302447 (способ реализован без введения в компаунд экстракта селективной очистки).

В качестве окисленной части компаунда использовали окисленный промышленный гудрон (свойства приведены в примере 5). Далее полученный окисленный битум смешивали с исходным гудроном (свойства приведены в примере 1) и затемненным вакуумным погоном (свойства приведены в примере 2) в соотношении по массе 75:5:20 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателям растяжимости при 0°С (0,3 см при норме не менее 3,7 см), температуре размягчения (46,2°С при норме не менее 47,0°С) и пенетрации при 25°С (66⋅0,1 мм при норме не менее 71⋅0,1 мм).

Пример 7 (прототип)

Получение битума вели по способу, описанному в патенте №2552468.

В качестве сырья окисления использовалась смесь, состоящая из 80 масс. % промышленного гудрона (свойства приведены в примере 1) и 20 масс. % затемненного вакуумного погона (свойства приведены в примере 2). Полученная сырьевая смесь имела условную вязкость при 80°С 76 с. Окисление вели до температуры размягчения продукта 80-90°С. Температура окисления составляла 230°С. Полученный окисленный битум имел температуру размягчения 82,6°С.

Далее полученный окисленный битум смешивали с исходным гудроном в соотношении по массе 25:75 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателю растяжимости при 0°С (0,8 см при норме не менее 3,7 см).

Пример 8

В качестве сырья окисления использовалась смесь, состоящая из 80 масс. % промышленного гудрона (свойства приведены в примере 1) и 20 масс. % затемненного вакуумного погона (свойства приведены в примере 2). Температура окисления составляла 230°С. Полученный окисленный битум имел температуру размягчения 58,8°С.

Далее полученный окисленный битум смешивали с затемненным вакуумным погоном в соотношении по массе 75:25 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум соответствует всем требованиям на марку БНД 70/100 по ГОСТ 33133-2014, причем имеется существенный запас по показателям растяжимости при 0°С (4,3 см при норме не менее 3,7 см), пенетрации при 0°С (35⋅0,1 мм при норме не менее 21⋅0,1 мм) и температуре хрупкости (минус 21°С при норме не более минус 18°С).

Пример 9

В качестве сырья окисления использовалась смесь, приведенная в примере 8. Температура окисления составляла 230°С. Полученный окисленный битум имел температуру размягчения 55,6°С.

Далее полученный окисленный битум смешивали с затемненным вакуумным погоном (свойства приведены в примере 2) в соотношении по массе 83:17 соответственно. Качество полученного битума приведено в таблице. Полученный битум соответствует всем требованиям на марку БНД 70/100 по ГОСТ 33133-2014, однако растяжимость при 0°С имела граничные значения (3,8 см при норме не менее 3,7 см).

Пример 10

В качестве сырья окисления использовалась смесь, приведенная в примере 8. Температура окисления составляла 230°С. Полученный окисленный битум имел температуру размягчения 53,2°С.

Далее полученный окисленный битум смешивали с затемненным вакуумным погоном в соотношении по массе 90:10 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателю растяжимости при 0°С (1,1 см при норме не менее 3,7 см).

Пример 11

В качестве сырья окисления использовалась смесь, состоящая из 90 масс. % промышленного гудрона (свойства приведены в примере 1) и 10 масс. % затемненного вакуумного погона (свойства приведены в примере 2). Температура окисления составляла 230°С. Полученный окисленный битум имел температуру размягчения 55,4°С.

Далее полученный окисленный битум смешивали с затемненным вакуумным погоном в соотношении по массе 85:15 соответственно. Качество полученного битума приведено в таблице 1. Полученный битум не соответствует требованиям к БНД 70/100 по показателю растяжимости при 0°С (0,7 см при норме не менее 3,7 см).

Таким образом, данным исследованием впервые была установлена возможность получения дорожного битума марки БНД 70/100 по ГОСТ 33133-2014 на основе сверхвысоковязкого гудрона из серийной нефти (балансовой смеси нефтей «Юралс») с условной вязкостью при 80°С более 200 с.

Способ получения дорожного битума, включающий окисление сырья битумного при повышенной температуре и последующее компаундирование его с нефтяными остаточными неокисленными продуктами, отличающийся тем, что в качестве сырья битумного используют композицию из гудрона, полученного из смеси нефтей «Юралс» и затемненного вакуумного погона при концентрации последнего 20 мас.%, окисление проводят при температуре 220-240°С до температуры размягчения 55-59°С, а для компаундирования в качестве нефтяных остаточных неокисленных продуктов используют затемненный вакуумный погон в концентрации 17-25 мас.%.
Источник поступления информации: Роспатент

Показаны записи 11-11 из 11.
05.03.2020
№220.018.0903

Способ получения уксусной кислоты и метилэтилкетона

Изобретение относится к способу получения уксусной кислоты и метилэтилкетона в процессе реакционно-ректификационного разделения смесей сложного состава, полученных в результате жидкофазного окисления фракции н-бутана и содержащих кислоты С1-С4, спирты С1-С4, сложные эфиры С2-С6, карбонильные...
Тип: Изобретение
Номер охранного документа: 0002715698
Дата охранного документа: 03.03.2020
Показаны записи 21-30 из 36.
24.08.2019
№219.017.c352

Катализатор защитного слоя для переработки тяжелого нефтяного сырья

Настоящее изобретение относится к катализатору защитного слоя для переработки тяжелого нефтяного сырья. Катализатор представляет собой смесь γ- и δ-модификаций оксида алюминия, которая содержит макропоры, образующие пространственную структуру. Доля макропор с размером в диапазоне от 50 нм до 15...
Тип: Изобретение
Номер охранного документа: 0002698191
Дата охранного документа: 23.08.2019
27.08.2019
№219.017.c3ff

Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Настоящее изобретение относится к бифункциональному катализатору защитного слоя процесса переработки тяжелого нефтяного сырья, а также к способу его получения. Катализатор содержит активный компонент и носитель. Носитель содержит оксид алюминия, а активный компонент представляет собой...
Тип: Изобретение
Номер охранного документа: 0002698265
Дата охранного документа: 26.08.2019
07.09.2019
№219.017.c88a

Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, в качестве носителя содержит оксид алюминия, а в качестве...
Тип: Изобретение
Номер охранного документа: 0002699354
Дата охранного документа: 05.09.2019
26.10.2019
№219.017.dae1

Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704123
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.db0a

Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Изобретение описывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002704122
Дата охранного документа: 24.10.2019
02.03.2020
№220.018.07d9

Способ очистки сточных вод от ионов аммония

Изобретение может быть использовано для очистки сточных вод на предприятиях химической, нефтехимической, металлургической, коксохимической промышленности. Очистка сточных вод от ионов аммония включает добавку в сточные воды растворов, содержащих фосфат-ионы и ионы магния, и осаждение...
Тип: Изобретение
Номер охранного документа: 0002715529
Дата охранного документа: 28.02.2020
07.03.2020
№220.018.09f1

Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия

Изобретение относится к химической технологии переработки отходов солевых растворов для получения минеральных удобрений и хлорида натрия. Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия, включает конверсию солевых растворов хлоридом калия,...
Тип: Изобретение
Номер охранного документа: 0002716048
Дата охранного документа: 05.03.2020
21.03.2020
№220.018.0e57

Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья

Изобретение относится к составу катализатора, способу его приготовления и процессу переработки тяжелого углеводородного сырья в его присутствии с целью получения нефтепродуктов с высокой добавочной стоимостью. Описан катализатор переработки тяжелого углеводородного сырья, полученный...
Тип: Изобретение
Номер охранного документа: 0002717095
Дата охранного документа: 18.03.2020
28.03.2020
№220.018.110d

Способ получения нефтяного игольчатого кокса

Изобретение относится к области нефтепереработки, в частности к процессу замедленного коксования для получения нефтяного игольчатого кокса, используемого в производстве крупногабаритных графитированных электродов и направлено на увеличение выхода кокса и улучшение структурной организации за...
Тип: Изобретение
Номер охранного документа: 0002717815
Дата охранного документа: 25.03.2020
29.04.2020
№220.018.1a50

Установка для получения нефтяного игольчатого кокса замедленным коксованием

Изобретение относится к области нефтепереработки, в частности к установке для получения замедленным коксованием нефтяного игольчатого кокса, используемого в производстве крупногабаритных графитированных электродов для электродуговых сталеплавильных печей, и направлено на утяжеление сырья...
Тип: Изобретение
Номер охранного документа: 0002720191
Дата охранного документа: 27.04.2020
+ добавить свой РИД