×
14.05.2019
219.017.51af

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА В ВИДЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА С РАСПРЕДЕЛЕННЫМИ СФЕРИЧЕСКИМИ ПОЛЫМИ ЧАСТИЦАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической технологии, а именно к производству новых форм катализаторов в виде композитов, содержащих каталитически активные частицы (оксиды хрома, никеля или кобальта, покрытые диоксидом титана) в виде слоистых полых сфер, для процессов превращения углеводородов, в том числе глубокого окисления ароматических углеводородов. Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами включает нанесение на органический полимерный носитель пленкообразующего раствора, с предварительной его обработкой, которая заключается во введении в него ионов Ni или CrO, или Co, с последующей сушкой. После стадии нанесения на органический полимерный носитель пленкообразующего раствора и его сушки, проводят смешение подготовленного органического полимерного носителя с жидким стеклом или с концентрированным раствором тетраметиламмония силиката, в соотношениях от 1,5 до 3 по массе, после чего композиту придают форму, с последующим ступенчатым нагреванием при температурах 100°C, 200°C, 300°C, 400°C, 500°C, или 120°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, или 110°C, 240°C, 320°C, 410°C в течение 30-60 минут при каждой температуре и при температурах 400-600°C продолжительностью 150-300 минут, и финально при температуре от 750 до 850°С в течение 60 минут. Пленкообразующий раствор может иметь следующий состав, моль/л: тетрабутоксититан от 0,05 до 0,5; азотная кислота – 1.0-5*10; дистиллированная вода - от 0,2 до 0,5; н-бутиловый спирт - остальное. Технический результат – способ позволяет формовать катализатор, придавая ему необходимую форму. 1 з.п. ф-лы, 1 табл., 6 ил., 3 пр.

Изобретение относится к области химической технологии, а именно к производству новых форм катализаторов в виде композитов, содержащих каталитически активные частицы (оксиды никеля, хрома или кобальта, покрытые диоксидом титана) в виде слоистых полых сфер, для процессов превращения углеводородов, в том числе глубокого окисления ароматических углеводородов. Композит может иметь, например, форму пирамиды, форму цилиндра, многогранную форму или заполнить свободную форму. Известно, что каталитически активными компонентами блочных катализаторов дожигания углеводородов в настоящее время служат в основном металлы платиновой группы, однако их использование ограничено высокой стоимостью и склонностью к дезактивации при высоких температурах. Альтернативой могут служить оксиды переходных металлов, обладающие повышенной каталитической активностью. Свойства катализаторов в наибольшей степени зависят от геометрической формы катализатора и от размера частиц активного компонента. Поэтому придание формы катализаторам, содержащим в качестве активных компонентов оксиды переходных металлов, является важным при их создании.

Известен способ получения блочного носителя сотовой структуры для катализаторов [1]. Способ синтеза носителя заключается в формовании экструзией пастообразной массы из каолина, талька, жидкого стекла и γ-оксида алюминия, поры которого заполнены парафином состава C16 и выше и взятого в количестве 10–30 % от массы носителя, отверждении в водном растворе хлорида магния, с последующей сушкой и прокаливанием. Предлагаемые в этом изобретении катализаторы используют в качестве катализаторов дожига органических и неорганических соединений, присутствующих в газовых выбросах технологических процессов или в выхлопных газах двигателей внутреннего сгорания. Катализаторы активны в процессе очистки продуктов сгорания углеводородов от окиси углерода и углеводородов при Т = 500°C.

Недостатком известного способа заключается в том, что степень дожига углеводородов при температуре Т = 500°C, не превышает 60 %.

Известен способ приготовления ионитного формованного катализатора [2]. Изобретение относится к получению ионитных формованных катализаторов, используемых для органического синтеза. Описывается способ приготовления ионитного формованного катализатора путем смешения сополимера на основе стирола и дивинилбензола и термопластичного материала, формования полученной смеси методом экструзии с последующим сульфированием, промывкой и сушкой, в котором в качестве сополимера на основе стирола и дивинилбензола используют двойной макропористый сополимер стирола с дивинилбензолом в смеси с тройным гелевым сополимером стирола, дивинилбензола и полярного мономера в массовом отношении от 1:4 до 4:1. Сополимеры предпочтительнее использовать с размером частиц 30-160 мкм.

Недостаток известного способа заключается в формовании катализатора при помощи формообразующего вещества методом экструзии, что требует использование дорогостоящего оборудования.

Известен способ приготовления катализатора на основе ионообменных смол [3], представляющего собой сульфированную смесь сополимера стирола с дивинилбензолом и термопластичного полимерного материала полиэтилена или полипропилена. В указанном способе производят смешение компонентов с водой, нагревание смеси до температуры плавления термопластичного полимерного материала, формование методом экструзии при повышенной температуре материального цилиндра экструдера и формующей головки и обработку сформованного катализатора хлорсульфоновой кислотой. С целью получения катализатора с повышенной активностью и улучшенными физико-механическими свойствами, формование проводят при температуре формующей головки 135-165°С для полиэтилена высокого давления, 150-180°С для полиэтилена низкого давления и 190-225°С для полипропилена, а температуру материального цилиндра устанавливают на 20–10°С ниже, чем температура формующей головки.

Недостатком известного способа является обработка катализаторов хлорсульфоновой кислотой, что может способствовать блокировки поверхности катализатора из-за оставшихся в порах ионов хлора, в результате чего активность катализатора может снижаться.

В качестве аналога выбраны оксидные катализаторы в виде полых сфер, применяемые для парциального окисления олефинов [4]. Способ их приготовления заключается в том, что путем растворения солей металлов и последующего осаждения активных компонентов, сушки, прокаливания и механической обработки получают высокодисперсный порошок, а затем этот порошок в виде пленки наносят на инертный органический носитель. Носитель служит матрицей, придающей каталитически активной массе требуемую форму, и может быть удален путем его целенаправленного удаления растворителем или, что более предпочтительно, термическим путем, например, воздействием высокой температуры в окислительной среде. В результате образуются полые частицы катализатора заданной формы. При этом покрытый слоем катализатора носитель предпочтительно прокаливать при температурах в пределах от 450 до 600°С в среде кислорода, или кислородсодержащей газовой среде, обеспечивая таким образом спекание каталитически активной массы для возможности ее применения в промышленных реакторах и полное, без остатка, удаление носителя. В качестве носителя используют органические материалы, например, полимеры на основе полистирола, такие как АСА (сополимер акрилонитрила, стирола и акрилата), полистирол (ПС, УПС (ударопрочный полистирол)), САН (сополимер стирола и акрилонитрила). На выбор таких полимеров не накладывается никаких ограничений. Полимерные материалы в целом существенно дешевле керамических носителей и поэтому позволяют снизить общую стоимость приготовления катализатора. Предлагаемые в этом изобретении катализаторы обладают существенно повышенной активностью в реакции парциального окисления олефинов.

Недостаток описанного способа приготовления оксидных катализаторов заданной формы, в том числе сфер, заключается в многостадийности получения предшественника твердого активного компонента, а также невозможности получения каталитического слоя с толщиной менее 5 мкм.

Известен способ получения композитного каталитического материала в виде слоистых полых сфер [5], выбранный в качестве прототипа. Способ включает нанесение на органический полимерный носитель пленкообразующего раствора и последующую термическую обработку. В качестве органического полимерного носителя используют ионообменные смолы, позволяющие создать управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы, где компонент ABC представлен общей формулой внешнего слоя сферы Ti(1-b)SibOq, b обозначает количество молей кремния от 0 до 1, (1-b) обозначает количество молей титана, которое зависит от количества вводимого в систему кремния, q обозначает стехиометрическое количество кислорода, входящего в состав внешнего слоя сферы, определяется валентностью и содержанием элементов, отличных от кислорода, компонент D представляет собой внутренний слой сферы с общей формулой М'xOy, где М' обозначает допирующий компонент в объеме полимерного органического носителя, х обозначает концентрацию металла или неметалла, вводимого в объем 1 г ионита, от 0 моль/л до максимально допустимого, y обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.

Несмотря на высокую каталитическую активность полых сферических катализаторов, недостатками прототипа является небольшой диметр частиц, что может приводить к перепадам давления в зернистом слое трубчатых реакторов при прохождении сырья. Последнее оказывает влияние на производительность реакторов, что затрудняет технологию окисления углеводородов.

Решение этой проблемы может служить закрепление частиц сферической формы в объеме кремний оксидной матрицы.

Основной задачей заявляемого изобретения является разработка способа получения катализатора в виде композиционного материала, в объеме которого распределены полые сферические частицы. Фиксирование полых сферических частиц в объеме композита, повышает устойчивость к локальным перегревам и термоударам (быстрым изменениям температуры), а также способствует увеличению геометрической поверхности стенок носителя, что технологически выгодно для каталитических процессов.

Задача решается возможностью формования катализаторов, придавая им форму, например, форму цилиндра, пирамиды, многогранную форму при использовании жидкого стекла или концентрированного раствора тетраметиламмония силиката, при этом диспергированные по всей матрице сферические частицы, представляют собой оксид никеля, хрома или кобальта, покрытый диоксидом титана, распределены в объеме композита, который содержит систему параллельных и/или пересекающихся каналов. Составные части объемного изделия (сферические частицы) имеют внутреннюю полость и являются каталитически активными компонентами всего изделия. Предлагаемый способ включает в себя приготовление водных растворов солей, а именно: нитрата никеля, нитрата кобальта, бихромата аммония с последующим погружением в каждый из них органического полимерного носителя (например, катионита или анионита) на 4-8 часов при перемешивании на магнитной мешалке, с последующей сушкой в сушильном шкафу в атмосфере воздуха при температуре 60-80°C 0,5-2 часа. Затем высушенный органический полимерный носитель с сорбированными ионами Ni2+ или Cr2O72-, или Co2+ погружают в пленкообразующий раствор комнатной температуры на 1,5-6 часов. При конкретном воплощении способа пленкообразующий раствор может иметь, например, следующий состав, моль/л:

тетрабутоксититан от 0,05 до 0,5;

азотная кислота – 1.0-5*10-3;

дистиллированная вода - от 0,2 до 0,5;

н-бутиловый спирт - остальное.

Покрытый пленкообразующим раствором полимерный носитель с сорбированными ионами Ni2+ или Cr2O72-, или Co2+ сушат в атмосфере воздуха при температуре 60-80°С в течение 0,5-2 часов. Далее высушенный полимерный носитель, содержащий ионы Ni2+ или Cr2O72-, или Co2+, покрытый пленкообразующим раствором смешивают с жидким стеклом (плотность 1,33 г/см3) или с концентрированным раствором тетраметиламмония силиката в соотношениях от 1,5 до 3 по массе при комнатной температуре, после чего композиту придают желаемую форму. Удаление органической составляющей полимерного носителя и формирование композита проводят ступенчатым нагреванием образцов при температурах 100°C, 200°C, 300°C, 400°C, 500°C, или 120°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, или 110°C, 240°C, 320°C, 410°C в течение 30-60 минут при каждой температуре и при температурах 400-600°C продолжительностью 150-300 минут, и финально при температуре от 750 до 850°С в течение 60 минут в атмосфере воздуха.

Предлагаемое изобретение отличается от прототипа по нескольким признакам:

1 в настоящем изобретении в отличии от прототипа в органический полимерный носитель ионы металлов вводят при перемешивании в течении 4-8 часов.

2 полимерный носитель с сорбированными ионами металла погружают в пленкообразующий раствор на 1,5-6 часов.

3 полимерный носитель с сорбированными ионами металлов, покрытый пленкообразующим раствором закрепляют в объеме кремний оксидной матрицы, что позволяет придавать композитам желаемую форму.

Сущность изобретения поясняется примерами, которые иллюстрируются графиками и рисунками.

На рис. 1 – Сечение компьютерной 3D микротомографии для композита TiO2/NiO-SiO2

На рис.2 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/NiO- SiO2

На рис. 3 – Сечение компьютерной 3D микротомографии для композита TiO2/Cr2O3-SiO2

На рис. 4 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/Cr2O3-SiO2

На рис. 5 – Сечение компьютерной 3D микротомографии для композита TiO2/Co3O4-SiO2

На рис. 6 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/Co3O4-SiO2

Пример 1. Для приготовления 100 мл пленкообразующего раствора на основе диоксида титана возьмем 95,76 мл н-бутилового спирта, добавляют к нему 0,72 мл дистиллированной воды и 0,0157 мл азотной кислоты (ρ=1,42 г/мл), после перемешивания в течение 1 минуты раствор оставляют стоять на 40 минут, для достижения равновесного состояния компонентов в системе. По истечению 40 минут, в раствор бутанол-вода-кислота добавляют 3,5 мл тетрабутоксититана, после чего приготовленный золь оставляют на 24 часа при температуре 20-22°С, для достижения начала периода относительной стабильности пленкообразующего раствора. Перед нанесением пленкообразующего раствора на органический полимерный носитель, проводят его предварительную подготовку. Для этого 30 г макропористого карбоксильного катионита, имеющего акрил-дивенилбензольную матрицу, помещают в 500 мл водного раствора Ni(NO3)2⋅6H2O и перемешивают в течение 6 часов на магнитной мешалке при комнатной температуре, после чего насыщенный ионами никеля (Ni2+) полимерный носитель высушивают в течение 1 часа при температуре 60°С в атмосфере воздуха. Далее подготовленный полимерный носитель методом погружения помещают в пленкообразующий раствор на 2 часа, после чего фильтруют и сушат в сушильном шкафу при температуре 60°С в течение 180 минут. Готовый органический носитель с сорбированными ионами никеля (Ni2+) и покрытый пленкообразующим раствором смешивают с жидким стеклом в соотношении 1:2,5 по массе. Полученной смеси придают желаемую форму, после чего объект проходит ступенчатую температурную обработку при температурах 100°C, 200°C, 250°C, 300°C, 350°C, в течение 30 минут, при температуре 400°C продолжительностью 180 минут, для удаления органической составляющей катионита, далее проводят нагревание до 800°С и отжиг при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. Скорость нагрева муфельной печи составляет 5°С/мин. При этом получается композит TiO2/NiO-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/NiO (рис. 1). На рис. 2 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/NiO-SiO2. На образце TiO2/NiO-SiO2 окисление п-ксилола начинается при 300°С. Конверсия гептана на данном образце достигает 100 % при температуре 480°С. В интервале температур 300-480°С, наряду с выделением диоксида углерода, зафиксировано выделение монооксида углерода. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.

Пример 2. Аналогично примеру 1. Отличается тем, что перед нанесением пленкообразующего раствора на органический полимерный носитель берут 30 г гелевого сильноосновного анионита, имеющего стирол-дивенилбензольную матрицу, помещают в 500 мл насыщенного водного раствора K2Cr2O7. После стадии смешения с жидким стеклом и придания формы, объект проходит ступенчатую температурную обработку при температурах 100°C, 200°C, 300°C, 400°C, 500°C, в течение 30 минут, при температуре 600°C продолжительностью 180 минут, для удаления органической составляющей анионита, после чего проводят нагревание до 800°С и выдерживают при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. При этом получается композит TiO2/Cr2O3-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/Cr2O3 (рис. 3). На рис. 4 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/Cr2O3-SiO2. На образце TiO2/Cr2O3-SiO2 окисление п-ксилола начинается при 150°С. Конверсия гептана на данном образце достигает 100 % при температуре 350°С. В диапазоне температур 200-285°С, совместно с диоксидом углерода выделяется монооксида углерода, причем объем выделившегося монооксида углерода в 3 раза меньше, чем для образца TiO2/NiO-SiO2. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.

Пример 3. Аналогично примеру 1. Отличается тем, перед нанесением пленкообразующего раствора на органический полимерный носитель берут 30 г макропористого карбоксильного катионита, имеющего акрил-дивенилбензольную матрицу, помещают в 500 мл водного раствора Co(NO3)2∙6H2O. Готовый органический носитель с сорбированными ионами кобальта (Co2+) и покрытый пленкообразующим раствором смешивают с концентрированным раствором тетраметиламмония силиката. После формования, объект проходит ступенчатую температурную обработку при температурах 110°C, 200°C, 300°C, 400°C в течение 30 минут, при температуре 450°C продолжительностью 180 минут, для удаления органической составляющей катионита, после чего проводят нагревание до 800°С и выдерживают при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. При этом получается композит TiO2/Co3O4-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/Co3O4 (рис. 5). На рис. 6 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/Co3O4-SiO2. На образце TiO2/Co3O4-SiO2 окисление п-ксилола начинается при 250°С. При температуре 450°С, конверсия гептана достигает 100 %. Совместно с выделением диоксида углерода зафиксировано выделение монооксида углерода в диапазоне температур 225-300°С, причем объем выделившегося монооксида углерода соизмерим с объемом выделившегося монооксида на образце TiO2/NiO-SiO2. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.

Таблица 1 –Характеристические полосы поглощения, используемые для идентификации продуктов

Структурная формула Волновые числа, см-1
CO2 2358, 670
CO 2178, 2114

Литература

1. Патент РФ № 2021013, МПК B01J37/04, опубл. 15.10.1994 г.

2. Патент РФ № 2201802, МПК B01J37/04, опубл. 10.04.2003 г.

3. Авторское свидетельство № 677191, МПК B01J37/00, опубл. 10.03.1997 г.

4. Патент РФ № 2491122, МПК B01J 35/08, опубл. 27.08.2013 г.

5. Патент РФ № 2608125, МПК B01J37/025, B01J31/08, опубл. 13.01.2017 г.


СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА В ВИДЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА С РАСПРЕДЕЛЕННЫМИ СФЕРИЧЕСКИМИ ПОЛЫМИ ЧАСТИЦАМИ
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА В ВИДЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА С РАСПРЕДЕЛЕННЫМИ СФЕРИЧЕСКИМИ ПОЛЫМИ ЧАСТИЦАМИ
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА В ВИДЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА С РАСПРЕДЕЛЕННЫМИ СФЕРИЧЕСКИМИ ПОЛЫМИ ЧАСТИЦАМИ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 173.
26.08.2017
№217.015.ec3f

Катализатор дегидрирования лёгких парафиновых углеводородов и способ получения непредельных углеводородов с его использованием

Изобретение относится к способу получения непредельных углеводородов дегидрированием соответствующих парафиновых углеводородов с использованием алюмохромовых катализаторов и может быть использовано в нефтехимической и химической промышленности. Описан катализатор дегидрирования легких...
Тип: Изобретение
Номер охранного документа: 0002627664
Дата охранного документа: 09.08.2017
26.08.2017
№217.015.ec8a

Катализатор с низким содержанием оксида хрома для дегидрирования изобутана и способ дегидрирования изобутана с его использованием

Изобретение относится к катализаторам дегидрирования изобутана и к способам получения изобутилена дегидрированием изобутана. Заявлен катализатор для дегидрирования изобутана, полученный пропиткой наноструктурированного оксида циркония водным раствором CrO, катализатор дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002627667
Дата охранного документа: 09.08.2017
29.12.2017
№217.015.f012

Способ получения водно-дисперсионного кремнийорганического лака

Изобретение относится к способам производства лакокрасочных материалов. Предложен способ получения водно-дисперсионного кремнийорганического лака на основе полиорганосилоксанов, при котором раствор полиорганосилоксанов в органическом растворителе (толуол, ксилол) эмульгируют в воде с...
Тип: Изобретение
Номер охранного документа: 0002629192
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f288

Способ и реагент-индикатор для рн-метрии вагинальной жидкости

Группа изобретений относится к медицине, а именно к гинекологии, и может быть использована для для рН-метрии вагинальной жидкости. Для этого проводят забор биоматериала вагинальной жидкости с формированием контактного слоя с реагентом, при этом контактный слой получают смешиванием образца...
Тип: Изобретение
Номер охранного документа: 0002637649
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f2bf

Способ получения n2-метилдезоксигуанозина

Изобретение относится к способу получения N2-метилдезоксигуанозина и может быть использовано в химической промышленности. Предложенный способ получения N2-метилдезоксигуанозина методом восстановительного аминирования формальдегида дезоксигуанозином проводят при перемешивании в течение 36 часов...
Тип: Изобретение
Номер охранного документа: 0002637503
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f389

Способ получения модифицированного крахмального реагента

Изобретение относится к области бурения нефтяных и газовых скважин, может быть использовано в рецептурах буровых растворов, а также других технологических жидкостей в различных отраслях промышленности, в которых используются крахмалосодержащие продукты. Из модифицированных крахмалов наибольшее...
Тип: Изобретение
Номер охранного документа: 0002637224
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3e8

Способ получения сульфидов кобальта с использованием штамма бактерии desulfovibrio sp.

Изобретение относится к биотехнологии. Способ предусматривает помещение сульфатредуцирующих бактерий в синтетическую среду, содержащую металлы, с добавлением питательных веществ, включающих в себя растворы витаминов, солей, кофакторов, лактата, сульфида натрия, с дальнейшим культивированием в...
Тип: Изобретение
Номер охранного документа: 0002637389
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f52c

Способ получения диэтаноламидов жирных кислот

Изобретение относится к химической технологии поверхностно-активных веществ, а именно к способу получения диэтаноламидов жирных кислот, которые являются неионогенными маслорастворимыми поверхностно-активными веществами и могут найти применение в качестве эмульгаторов инвертных эмульсий для нужд...
Тип: Изобретение
Номер охранного документа: 0002637121
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.0969

Способ получения каллусной культуры борца бородатого (aconitum barbatum patr. ex pers.)

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения каллусной культуры борца бородатого (Aconitum barbatum Patr. ex Pers.), включающий стерилизацию семян, помещение их в холодильник при температуре 5±1°С на 2,5 месяца для стратификации и получение...
Тип: Изобретение
Номер охранного документа: 0002631927
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.09e4

Способ прогнозирования риска лимфогенного метастазирования при раке молочной железы на основе экспрессии гена белка ykl-39

Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогнозирования риска лимфогенного метастазирования при раке молочной железы. Проводят молекулярно-генетическое исследование биопсийных образцов опухолевой ткани с последующим выделением РНК и определением...
Тип: Изобретение
Номер охранного документа: 0002632115
Дата охранного документа: 02.10.2017
Показаны записи 81-90 из 92.
27.06.2019
№219.017.9931

Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации животных жиров, растительных масел, эфиров жирных кислот, свободных жирных кислот и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородсодержащих алифатических...
Тип: Изобретение
Номер охранного документа: 0002356629
Дата охранного документа: 27.05.2009
27.06.2019
№219.017.993d

Способ получения частично фторированных ароматических аминов

Изобретение относится к новому улучшенному способу получения частично фторированных ароматических аминов, содержащих хотя бы один атом водорода в орто-положении к аминогруппе, общей формулы 1, где: Х=F (1а) или Н (1b), отличающемуся тем, что проводят функционализацию пентафторанилина по...
Тип: Изобретение
Номер охранного документа: 0002400470
Дата охранного документа: 27.09.2010
29.06.2019
№219.017.a035

Катализатор, способ его приготовления и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002402378
Дата охранного документа: 27.10.2010
16.11.2019
№219.017.e346

Способ получения композитных каркасных материалов (варианты)

Изобретение относится к области приготовления широкого круга композитных материалов и может найти широкое применение в производстве катализаторов, носителей, сорбентов и др. Изобретение касается способа получения композитных каркасных материалов, таких как носители, катализаторы и сорбенты, с...
Тип: Изобретение
Номер охранного документа: 0002706222
Дата охранного документа: 15.11.2019
29.02.2020
№220.018.0751

Способ получения сорбентов

Изобретение относится к области приготовления композитных материалов и может найти применение в производстве катализаторов, носителей, сорбентов. Предложен способ получения сорбента для удаления воды, включающий получение 3D печатной модели материала в точной координатной сетке по следующему...
Тип: Изобретение
Номер охранного документа: 0002715184
Дата охранного документа: 25.02.2020
12.04.2023
№223.018.453b

Способ получения 2,4,6-триметилпиридина в присутствии иерархического цеолитного катализатора h-ymmm

Изобретение относится к способу получения 2,4,6-триметилпиридина путем газофазной каталитической конденсации ацетона с аммиаком и кислородсодержащим соединением, в котором в качестве кислородсодержащего соединения используют этанол, в качестве катализатора используют гранулированный...
Тип: Изобретение
Номер охранного документа: 0002759567
Дата охранного документа: 15.11.2021
12.04.2023
№223.018.46a1

Способ получения 2,4,6-триметилпиридина в присутствии иерархического цеолитного катализатора h-ymmm

Изобретение относится к способу получения 2,4,6-триметилпиридина, который широко используется при изготовлении полимеров, ингибиторов коррозии металлов, в химическом синтезе и др. Способ заключается во взаимодействии ацетона и аммиака в присутствии гранулированного цеолита Y с иерархической...
Тип: Изобретение
Номер охранного документа: 0002767452
Дата охранного документа: 17.03.2022
20.05.2023
№223.018.6793

Способ получения органического клеящего состава для предотвращения растрескивания стручков сельскохозяйственных культур

Изобретение может быть использовано в сельском хозяйстве при обработке посевов рапса перед уборкой. Способ получения органического клеящего состава для предотвращения растрескивания стручков сельскохозяйственных культур включает частичное омыление в щелочном растворе смеси клеящих веществ. В...
Тип: Изобретение
Номер охранного документа: 0002794723
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.68d2

Способ получения фенола из бензола

Изобретение относится к способу получения фенола из бензола. Данный способ включает этапы, на которых: подают в реактор бензолсодержащий раствор с помощью первого средства переноса текучей среды; подают в реактор окислитель с помощью второго средства переноса текучей среды; подают в реактор...
Тип: Изобретение
Номер охранного документа: 0002794729
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6944

Способ получения средних дистиллятов из легких алканов

Изобретение относится к получению углеводородов из углеводородов с меньшим числом атомов углерода в молекуле. Изобретение касается способа получения средних дистиллятов из легких алканов, содержащего этапы, на которых подвергают каталитическому преобразованию легкие алканы в каталитической...
Тип: Изобретение
Номер охранного документа: 0002794439
Дата охранного документа: 18.04.2023
+ добавить свой РИД