×
27.06.2019
219.017.993d

СПОСОБ ПОЛУЧЕНИЯ ЧАСТИЧНО ФТОРИРОВАННЫХ АРОМАТИЧЕСКИХ АМИНОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к новому улучшенному способу получения частично фторированных ароматических аминов, содержащих хотя бы один атом водорода в орто-положении к аминогруппе, общей формулы 1, где: Х=F (1а) или Н (1b), отличающемуся тем, что проводят функционализацию пентафторанилина по аминогруппе обработкой производным алифатической или ароматической моно- или дикарбоновой кислоты с получением соответствующего производного пентафторанилина в качестве субстрата, который подвергают восстановительному гидродефторированию под действием металла-восстановителя в присутствии источника протонов и в присутствии катализатора - комплексного соединения никеля и/или кобальта с лигандами, выбранными из гетероциклических азотсодержащих соединений или фосфорсодержащих соединений, в среде апротонного диполярного растворителя с последующим щелочным или кислотным гидролизом реакционной смеси с образованием соответствующего амина. 6 з.п. ф-лы, 6 табл.
Реферат Свернуть Развернуть

Изобретение относится к способам получения частично фторированных ароматических аминов, содержащих хотя бы один атом водорода в орто-положении к аминогруппе, общей формулы 1,

где: Х=F (1а) или Н (1b), которые могут использоваться в качестве исходных веществ в синтезе фторированных гетероциклических соединений, проявляющих широкий спектр биологической активности (L. A. Mitscher, Chem. Rev. 2005, Vol.105, p.559-592). Использование неполностью фторированных ароматических аминов позволяет уменьшить количество стадий в процессе получения препаратов фторхинолонового ряда (см. например, A. Jackson, О. Meth-Cohn. J. Chem. Soc. - Chem. Commun. 1995, Vol.13, p.1319) по сравнению с другими методами получения аналогичных соединений (L.A.Mitscher, Chem. Rev. 2005, Vol.105, №2, p.559-592).

Известен способ получения полифторированных анилинов общей формулы FnC6H(5-n)NH2, где: n = от 1 до 4, восстановлением соединений типа XmFnC6H(5-m-n)NO2, где: Х - атом хлора или брома, m = от 1 до 4, под действием водорода в присутствии палладиевого катализатора, амина, нерастворимого в воде и не образующего водорастворимых солей с галогеноводородными кислотами, и, если необходимо, инертного растворителя (US 5498794, C07D 213/73, 12.03.1999).

Также описан метод восстановления аналогичных соединений водородом в растворе, содержащем палладиевый, никелевый или платиновый катализатор (US 5856577, С07В 61/00, С07С 209/36, 05.01.1999). Недостатком обоих описанных методов является низкая доступность исходных соединений XmFnC6H(5-m-n)NO2.

Помимо этого известен метод получения 3,4,5-трифторанилина 1b взаимодействием 1,3,4,5-тетрафторбензола с амидом натрия в жидком аммиаке при температуре не выше - 33°С (А.А.Штарк, Т.В.Чуйкова, Г.А.Селиванова, В.Д.Штейнгарц. Журн. орган. химии, 1987, Т.23, стр.2574-2577). Недостатками данного способа являются: низкая доступность исходного соединения; необходимость проведения реакции при низких температурах, а также необходимость утилизации жидкого аммиака после проведения реакции.

Известен способ получения частично фторированных ацетанилидов путем гидродефторирования пентафторацетанилида (S.S.Laev, L.Yu.Gurskaya, G.A.Selivanova, I.V.Beregovaya, L.N.Shchegoleva, N.V.Vasil'eva, M.M.Shakirov, V.D.Shteingarts; Eur. J. Org. Chem., 2007, Vol.2, p.306-316). Процесс осуществляется под действием цинка в водном аммиаке в присутствии стехиометрических количеств солей Zn (II) или Cu (II). Основным недостатком данного способа является то обстоятельство, что авторам не удалось достичь гидродефторирования субстрата исключительно по орто-положениям к ацетанилидной группе. Кроме того, не было зафиксировано образование 3,4,5-трифторацетанилида - предшественника соединения 1b.

Предлагаемый способ отличается от известного тем, что соединения 1а и 1b получаются в результате трехстадийного процесса (схема 1), включающего функционализацию исходного пентафторанилина по аминогруппе, восстановительное каталитическое гидродефторирование N-ацилпроизводных пентафторанилина по одному или обоим орто-положениям к аминогруппе под действием металла-восстановителя в присутствии источников протонов при нагревании с последующим щелочным или кислотным гидролизом образующегося продукта с образованием соответствующего амина в условиях, указанных в пп.1-7 формулы изобретения. Выход 2,3,4,5-тетрафторанилина 1а и 3,4,5-трифторанилина 1b составляет 25-99%. Предлагаемый способ позволяет повысить селективность процесса гидродефторирования по oртo-положению к амино-группе. Кроме того, при получении соединений 1а и 1b данным способом в качестве исходных соединений используются производные пентафторанилина, являющегося доступным соединением.

Функционализация пентафторанилина осуществляется известными способами, а именно взаимодействием с соответствующими ангидридами, хлорангидридами или карбоновыми кислотами. Гидрогенолиз ароматических C-F связей протекает под действием восстановителя, в роли которого выступает цинк или магний, в присутствии каталитических количеств комплексных соединений никеля и/или кобальта, в среде апротонных диполярных растворителей, в присутствии источников протонов. Реакция может проводиться при температурах от 20 до 150°С. Нижний предел температуры определяется тем, что при температуре ниже 20°С сильно возрастает время, необходимое для протекания реакции. Верхний предел определяется стабильностью никелевого комплекса. Оптимальная температура для проведения реакции находится в промежутке между 35 и 85°С.

В качестве заместителей R1 и R2 могут выступать:

1. Нециклические ацильные заместители: R1=H, R2=-С(O)R3, где: R3 - алкильная группа от C1 до С10, которая может содержать различные заместители или ненасыщенные фрагменты, такие как двойные или тройные С-С-связи, или арильная группа; R1=-C(O)R3, R2=-C(O)R3, где: R3 - заместитель, описанный ранее.

2. Циклические ацильные заместители: (R1R2)=(-С(O)-(СН2)n-С(O)-), где: n = от 1 до 10; (R1R2)=(-C(O)-CH=CH-C(O)-); (R1R2)=(-C(O)(o-Ar)-C(O)-), где: o-Ar - о-фениленовая, 1,2-нафтилиденовая или 2,3-нафтилиденовая группа, которая может содержать различные заместители в других положениях ароматического кольца.

MLn - комплексные соединения никеля (II) или кобальта (II), используемые в виде готовых соединений или приготовляемые in situ. В качестве лигандов L могут использоваться азотсодержащие соединения, такие как 2,2'-бипиридил (Вру) или 1,10-фенантролин (Phen), алкил- или арилфосфины, бидентатные фосфорсодержащие лиганды Ph2P(CH2)nPPh2, где: n = от 1 до 4, или смешанные бидентатные лиганды, содержащие фосфор и азот. Также возможно использование смешанных комплексов, включающих в качестве лигандов и азот- и фосфорсодержащие соединения.

Каталитические комплексы можно получать in situ из солей никеля или кобальта и соответствующего лиганда или использовать готовые комплексные соединения. Количество каталитического комплекса по отношению к субстрату может составлять от 0.001 до 1 (по молям). Оптимальное количество катализатора составляет от 0.01 до 0.05 (по молям). При использовании меньшего количества катализатора требуется неоправданно большое время для протекания реакции, а верхний предел загрузки определяется из соображений рациональности расхода катализатора.

В качестве восстановителя используются цинк или магний в количестве от 1 до 15 эквивалентов по отношению к субстрату. Наиболее приемлемым является использование восстановителя в количестве от 3 до 10 эквивалентов по отношению к субстрату, поскольку использование меньшего количества резко снижает конверсию субстрата 2 в дефторированные продукты 3, а использование большего количества восстановителя ведет к излишнему расходу реагента.

Реакция протекает в среде апротонных диполярных растворителей, таких как N,N-диметилформамид (ДМФ), N,N-диметилацетамид (ДМА), N-метилпирролидон (МП), гексаметилфосфотриамид (ГМФА) или диметилсульфоксид (ДМСО).

Оптимальная температура проведения реакции составляет от 35 до 85°С и определяется тем, что при более низкой температуре возрастает время, необходимое для протекания реакции, а при температуре выше 85°С неоправданно возрастает энергоемкость процесса.

В качестве источников протонов могут использоваться вода, хлорид аммония, спирт, а также органические и неорганические кислоты.

Гидролиз производных 3, а также выделение и очистка целевых продуктов 1а и 1b осуществляются известными способами.

Неочевидность предлагаемого решения поставленной задачи иллюстрируется тем, что на сегодняшний день в литературе не встречается описания методов каталитической активации C-F связи комплексными соединениями никеля или кобальта в производных фторированных ароматических аминов.

В отличие от метода получения частично фторированных бензойных кислот (RU 2155185, С07С 63/70, 27.08.2000) в данном случае необходимой стадией является предварительная функционализация аминогруппы в молекуле пентафторанилина и гидролиз продукта гидродефторирования 3. Кроме того, априорно не было известно, как отразится на каталитической активности комплекса изменение природы субстрата и переходного металла.

Сущность изобретения иллюстрируется следующими примерами.

Пример 0. Функционализация пентафторанилина по аминогруппе. В колбу, снабженную обратным холодильником, магнитной мешалкой и масляной баней с терморегулятором, помещают 5 г (27 ммоль) пентафторанилина и 21.6 г (20 мл, 212 ммоль) уксусного ангидрида. Полученную смесь кипятят при перемешивании с обратным холодильником в течение 5 ч. После этого реакционную смесь разбавляют 50 мл воды, продукт отфильтровывают, промывают 2 раза по 10 мл холодной воды и сушат в вакуум-эксикаторе над гидроксидом калия. Получают 6.1 г (90%) пентафторацетанилида.

Пример 1. Получение 2,3,4,5-тетрафторанилина.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором помещают 30 мг (0.125 ммоль) NiCl2·6H2O, 50 мг (0.250 ммоль) Phen·Н2О, 2.5 мл ДМФ и 0.5 мл воды. Реакционную смесь перемешивают при температуре 70°С в течение 1 ч, затем добавляют 1.64 г (25 ммоль) цинковой пыли, перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают в течение 6 ч при температуре 70°С, затем выливают в 10 мл воды, твердую часть отфильтровывают, промывают еще 10 мл воды. Продукт вымывают из твердой фазы 10 мл ацетонитрила. Растворитель упаривают, к остатку добавляют 10 мл воды и гидроксид натрия до рН 13-14, полученную смесь перемешивают в течение 1 ч при комнатной температуре. Продукт отгоняют с водяным паром, экстрагируют серным эфиром, экстракт сушат сульфатом магния, эфир отгоняют в вакууме. Получают 400 мг вещества, содержание 2,3,4,5-тетрафторанилина составляет 95% (степень конверсии пентафторацетанилида составляет 98%).

Примеры 2-16. Получение 2,3,4,5-тетрафторанилина.

Варьируется состав каталитического комплекса и природа растворителя. В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 30 мг (0.125 ммоль) NiCl2·6H2O (опыты 2-5) или 30 мг (0.125 ммоль) CoCl2·6H2O (примеры 6-8), необходимое количество (1, 2 или 3 эквивалента по отношению к соли никеля или кобальта) Вру или Phen·H2O, 2.5 мл соответствующего растворителя и 0.5 мл воды. Реакционную смесь перемешивают при температуре 70°С в течение 1 ч, затем добавляют 1.64 г (25 ммоль) цинковой пыли, перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают в течение 6 ч при температуре 70°С. Обработка реакционной смеси, гидролиз 2,3,4,5-тетрафторацетанилида и выделение продукта производятся аналогично методике, описанной в примере 1.

Результаты приведены в таблице 1.

Примеры 17-23. Получение 2,3,4,5-тетрафторанилина.

Реакции проводят с использованием готовых комплексов никеля или кобальта. Варьируют состав каталитического комплекса и природу растворителя.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 0.125 ммоль соответствующего комплекса никеля или кобальта, 2.5 мл ДМФ и 0.5 мл воды и 1.64 г (25 ммоль) цинковой пыли. Смесь перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают в течение 6 ч при температуре 70°С. Обработка реакционной смеси, гидролиз 2,3,4,5-тетрафторацетанилида и выделение продукта производят аналогично методике, описанной в примере 1.

Результаты экспериментов приведены в таблице 2.

Пример 24. Получение 2,3,4,5-тетрафторанилина.

В колбу помещают 82 мг (0.125 ммоль) Ni(PPh3)2Cl2, 20 мг (0.125 ммоль) Вру, 1635 мг (25 ммоль) цинковой пыли и 563 мг (2.5 ммоль) пентафторацетанилида. Колбу вакуумируют, затем заполняют аргоном. С помощью шприца добавляют смесь 2.5 мл ДМФ и 0.5 мл воды. Реакционную массу перемешивают при комнатной температуре в течение 1 ч, затем температуру поднимают до 70°С и перемешивают еще 6 ч. Обработку реакционной смеси, гидролиз 2,3,4,5-тетрафторацетанилида и выделение продукта производят аналогично методике, описанной в примере 1. Получают 360 мг вещества, содержание 2,3,4,5-тетрафторанилина составляет 80% (степень конверсии пентафторацетанилида составляет 100%).

Примеры 25-27. Получение 2,3,4,5-тетрафторанилина.

Варьируют состав каталитического комплекса и природу растворителя.

В колбу помещают 82 мг (0.125 ммоль) Ni(PPh3)2Cl2, 20 мг (0.125 ммоль) Вру или 25 мг (0.125 ммоль) Phen·H2O, 1635 мг (25 ммоль) цинковой пыли и 563 мг (2.5 ммоль) пентафторацетанилида. Колбу вакуумируют, затем заполняют аргоном. С помощью шприца добавляют смесь 2.5 мл ДМФ и 0.5 мл воды. Реакционную массу перемешивают при комнатной температуре в течение 1 ч, затем температуру поднимают до 70°С и перемешивают еще 6 ч. Обработка реакционной смеси, гидролиз 2,3,4,5-тетрафторацетанилида и выделение продукта производят аналогично методике, описанной в примере 1.

Результаты приведены в таблице 3.

Пример 28. Получение 3,4,5-трифторанилина.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 30 мг (0.125 ммоль) NiCl2·6Н2О, 50 мг (0.250 ммоль) Phen·H2O, 2.5 мл МП и 0.5 мл воды. Реакционную смесь перемешивают при температуре 70°С в течение 1 ч, затем добавляют 1635 мг (25 ммоль) цинковой пыли, перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают в течение 6 ч при температуре 70°С, затем выливают в 10 мл воды, твердую часть отфильтровывают, промывают еще 10 мл воды. Продукт вымывают из твердой фазы 10 мл ацетонитрила. Растворитель упаривают, к остатку добавляют 10 мл воды и гидроксид натрия до рН 13-14, полученную смесь перемешивают в течение 1 ч при комнатной температуре. Продукт отгоняют с водяным паром, экстрагируют серным эфиром, экстракт сушат сульфатом магния, эфир отгоняют в вакууме. Получают 305 мг вещества, содержание 3,4,5-тетрафторанилина составляет 92% (степень конверсии пентафтор- и 2,3,4,5-тетрафторацетанилидов составляет 100%).

Примеры 29-32. Получение 3,4,5-трифторанилина.

Варьируют температуру проведения реакции.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 30 мг (0.125 ммоль) NiCl2·6H2O, 50 мг (0.250 ммоль) Phen·H2O, 2.5 мл МП и 0.5 мл воды. Реакционную смесь перемешивают при комнатной температуре в течение 1 ч, затем добавляют 1635 мг (25 ммоль) цинковой пыли, перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают при соответствующей температуре в течение 7 ч. Обработка реакционной смеси, гидролиз 3,4,5-трифторацетанилида и выделение продукта производятся аналогично методике, описанной в примере 28.

Результаты приведены в таблице 4.

Примеры 33-41. Получение 3,4,5-трифторанилина.

Варьируют время реакции и соотношение восстановитель/субстрат.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 30 мг (0.125 ммоль) NiCl2·6H2O, 50 мг (0.250 ммоль) Phen·H2O, 2.5 мл МП и 0.5 мл воды. Реакционную смесь перемешивают при температуре 70°С в течение 1 ч, затем добавляют соответствующее количество цинковой пыли, перемешивают еще 10 мин и прибавляют 563 мг (2.5 ммоль) пентафторацетанилида. Реакционную смесь перемешивают при температуре 70°С в течение требуемого времени. Обработка реакционной смеси, гидролиз 3,4,5-трифторацетанилида и выделение продукта производят аналогично методике, описанной в примере 28.

Результаты приведены в таблице 5.

Примеры 42-44. Гидродефторирование различных производных пентафторанилина.

В колбу, снабженную термометром, газоотводной трубкой, магнитной мешалкой и масляной баней с терморегулятором, помещают 30 мг (0.125 ммоль) NiCl2·6H2O, 50 мг (0.250 ммоль) Phen·H2O, 2.5 мл МП и 0.5 мл воды. Реакционную смесь перемешивают при температуре 70°С в течение 1 ч, затем добавляют соответствующее количество цинковой пыли, перемешивают еще 10 мин и прибавляют 2.5 ммоль соответствующего субстрата. Реакционную смесь перемешивают в течение требуемого времени при температуре 70°С. Обработка реакционной массы, гидролиз смеси N-ацилполифторанилинов и выделение продукта производят аналогично методике, описанной в примере 28.

Результаты приведены в таблице 6.

Таким образом, вышеописанный способ позволяет получать частично фторированные анилины с высокими выходами в мягких условиях, используя доступные реагенты.

Таблица 1
№ примера Каталитический комплекс Растворитель Степень конверсии 2 Содержание 1a
2 NiCl2-2Bpy ДМА 99% 98%
3 NiCl2-3Вру ДМА 83% 83%
4 NiCl2-2Bpy МП 95% 95%
5 NiCl2-Phen МП 90% 90%
6 CoCl2-3Вру ДМФ 92% 75%
7 CoCl2-3Вру МП 92% 73%
8 CoCl2-2Phen МП 84% 81%
9 NiCl2-2Bpy ГМФА 70% 70%
10 NiCl2-2Phen ГМФА 79% 79%
11 CoCl2-2Bpy ГМФА 56% 56%
12 CoCl2-2Phen ГМФА 63% 63%
13 NiCl2-2Bpy ДМСО 67% 67%
14 NiCl2-2Phen ДМСО 71% 71%
15 CoCl2-2Bpy ДМСО 54% 54%
16 CoCl2-2Phen ДМСО 59% 59%

Таблица 2
№ примера Каталитический комплекс Растворитель Степень конверсии 2 Содержание la
17 NiCl2-2Bpy ДМА 98% 97%
18 NiCl2-3Вру ДМА 85% 85%
19 NiCl2-2Bpy МП 96% 96%
20 NiCl2-Phen МП 93% 93%
21 CoCl2-3Вру ДМФ 89% 72%
22 CoCl2-3Вру МП 93% 71%
23 CoCl2-2Phen МП 86% 80%

Таблица 3
№ примера Каталитический комплекс Растворитель Степень конверсии 2 Содержание 1a
25 Ni(PPh3)2Cl2-Phen ДМФ 88% 88%
26 Ni(PPh3)2Cl2-Вру МП 100% 87%
27 Ni(PPh3)2Cl2-Phen МП 100% 99%

Таблица 4
№ примера Температура проведения реакции, °С Степень конверсии Содержание 1a Содержание 1b
2 3
29 35 27% 0% 27% 0%
30 50 75% 0% 75% 0%
31 70 100% 100% 0% 92%
32 85 100% 100% 0% 93%

Таблица 5
№ примера Соотношение восстановитель/субстрат Время реакции Степень конверсии Содержание 1b
2 3
33 1 7 ч 12% 0% 0%
34 2 7 ч 23% 0% 0%
35 3 7 ч 69% 0% 0%
36 4 7 ч 100% 25% 25%
37 5 7 ч 100% 89% 89%
38 10 4 ч 100% 77% 77%
39 10 7 ч 100% 100% 95%
40 15 3 ч 100% 88% 88%
41 15 7 ч 100% 100% 94%

Таблица 6
№ Примера Субстрат Степень конверсии субстрата Содержание 1b
42 100% 88%
43 100% 65%
44 100% 67%

Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
29.04.2019
№219.017.42d5

Катализатор и способ конверсии аммиака

Изобретение относится к катализаторам для процесса окисления аммиака в производстве слабой азотной кислоты. Описаны катализатор конверсии аммиака в оксид азота (II) блочной сотовой структуры, имеющий форму прямоугольной призмы или наклонной призмы с углом наклона 0-45°С, с коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002368417
Дата охранного документа: 27.09.2009
13.06.2019
№219.017.820e

Способ приготовления катализатора и способ получения дизельного топлива с использованием этого катализатора

Изобретение относится к способу получения моторных топлив, а именно к каталитическому процессу получения дизельного топлива с улучшенными температурными характеристиками из нефтяного сырья. Описан способ приготовления катализатора для получения дизельного топлива из сырья природного...
Тип: Изобретение
Номер охранного документа: 0002376062
Дата охранного документа: 20.12.2009
19.06.2019
№219.017.8758

Катализатор и способ получения никотиновой кислоты

Изобретение относится к оксидным ванадийтитановым катализаторам, используемым для получения никотиновой кислоты путем газофазного окисления β-пиколина кислородом, и способам получения никотиновой кислоты с использованием данных катализаторов. Катализатор содержит оксид ванадия, оксид титана и...
Тип: Изобретение
Номер охранного документа: 0002371247
Дата охранного документа: 27.10.2009
27.06.2019
№219.017.992f

Катализатор окисления и способ осуществления экзотермических реакций с его использованием

Изобретение относится к способам осуществления реакций окисления, например сжигания газообразных, жидких и твердых топлив и т.п. Описан катализатор окисления в форме колец, блоков сотовой структуры, пластин, носитель катализатора представляет собой кермет, содержащий переходный металл, сплав...
Тип: Изобретение
Номер охранного документа: 0002389549
Дата охранного документа: 20.05.2010
Показаны записи 1-10 из 68.
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.90a7

Способ получения нитродифениламинов

Изобретение относится к способу получения нитродифениламинов общей формулы где нитро-группа может находиться в орто-, мета- или пара-положении относительно анилинового фрагмента. Способ заключается во взаимодействии анилина с нитрогалогенбензолами общей формулы CH(NO)X, где X=Cl, Br, I, при...
Тип: Изобретение
Номер охранного документа: 0002502724
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a8

Способ получения n-алкил-n'-фенил-пара-фенилендиаминов

Изобретение относится к усовершенствованному способу получения N-алкил-N'-фенил-п-фенилендиаминов общей формулы 1, где R, R - алкильные заместители. Способ заключается в восстановительном алкилировании 4-нитродифениламина (4-НДФА) алифатическими кетонами общей формулы R-CO-R, где R, R -...
Тип: Изобретение
Номер охранного документа: 0002502725
Дата охранного документа: 27.12.2013
20.05.2014
№216.012.c5da

Способ получения углеродных наноматериалов с нанесённым диоксидом кремния

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают...
Тип: Изобретение
Номер охранного документа: 0002516409
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.ddf3

Фотокатализатор, способ его приготовления и способ получения водорода

Изобретение относится к области химии. Фотокатализатор для получения водорода из водного раствора глицерина под действием видимого излучения состава: Pt/CdZnS/ZnO/Zn(OH), где: x=0,5-0,9, массовая доля платины составляет 0,1-1%, готовят из смеси растворов солей кадмия и цинка, гидроксиды...
Тип: Изобретение
Номер охранного документа: 0002522605
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.efeb

Способ обезвреживания органических отходов и нефти

Изобретение относится к способам обезвреживания беспламенным сжиганием жидких органических отходов и нефти, содержащей серу, в кипящем слое катализатора и может быть использовано в химической, нефтехимической, лесохимической, атомной промышленности и теплоэнергетике. Способ осуществляется путем...
Тип: Изобретение
Номер охранного документа: 0002527238
Дата охранного документа: 27.08.2014
+ добавить свой РИД