×
09.05.2019
219.017.4c03

Результат интеллектуальной деятельности: СОСТАВ ЛИТЕЙНОГО ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИКЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии. Состав литейного жаропрочного сплава на основе никеля содержит компоненты при следующем соотношении, мас.%: хром - 3,0-7,0, кобальт - 4,0-8,5, углерод - 0,1-0,2, вольфрам - 11,5-15,0, алюминий - 4,8-5,8, ниобий - 0,4-1,0, титан - 2,0-3,0, молибден - 0,5-1,0, бор - ≤0,025, церий - ≤0,02, лантан - ≤0,02, иттрий - ≤0,02 и никель - остальное. Изобретение направлено на повышение прочностных характеристик сплава, стабильности сплава при температурах не выше 1000°С и жаростойкости сплава. 2 табл.

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам, используемым при изготовлении высоконагруженных деталей газотурбинных двигателей, например рабочих лопаток, работающих при температурах до 1000°С.

Известны жаропрочные сплавы на основе никеля, содержащие хром, алюминий, титан, молибден и вольфрам (Химушин Ф.Ф. Жаропрочные стали и сплавы. - М., 1969 г., с.371) - аналог.

Известные сплавы, обладая высокими технологическими свойствами, имеют предел сточасовой длительной прочности при 1000°С не более 150-180 МПа.

Известен сплав ЖС-6К, содержащий никель, хром, кобальт, молибден, вольфрам, титан, алюминий, церий и бор (Коррозионно-стойкие и жаропрочные стали и сплав. Справочник по авиационным материалам. М.: ВИАМ, 1975 г, т.3, с.525-532) - аналог.

Данный сплав имеет предел сточасовой длительной прочности при 1000°С - 150-160 МПа.

Из-за недостаточно высоких показателей предела сточасовой длительной прочности сплав ЖС-6К также не может быть использован при изготовлении высоконагруженных деталей газотурбинных двигателей, например рабочих лопаток.

Известен жаропрочный никелевый сплав ЖС-6У, содержащий никель, углерод, хром, кобальт, бор, молибден, вольфрам, титан, алюминий, ниобий и церий (патент РФ №2130088, МПК 6: С22С 19/05, опубликовано 1999.05.10) - прототип.

Данный сплав имеет предел сточасовой прочности при 1000°С - 170-180 МПа.

Из-за недостаточно высоких показателей предела сточасовой длительной прочности сплав ЖС-6У также не может быть использован при изготовлении высоконагруженных деталей газотурбинных двигателей.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение прочностных характеристик никелевых жаропрочных сплавов с поликристаллической структурой, таких как предел сточасовой прочности и стабильность сплава при температурах не выше 1000°С, жаростойкость сплава и т.д., путем создания сбалансированной системы их легирования и, как следствие, уменьшение вероятности зарождения статических и усталостных трещин на границах зерен.

Указанный технический результат достигается тем, что состав жаропрочного сплава (ЖС6У-ПК) на основе никеля содержит никель, хром, углерод, кобальт, вольфрам, алюминий, ниобий, титан, молибден, бор и церий дополнительно содержит лантан и иттрий в следующем соотношении компонентов (мас.%): хром - 3,0-7,0, углерод - 0,1-0,2, кобальт - 4,0-8,5, вольфрам 11,5-15,0, алюминий - 4,8-5,8, ниобий -0,4-1,0, титан - 2,0-3,0, молибден - 0,5-1,0, бор - ≤0,025, лантан - ≤0,02, иттрий - ≤0,02, церий - ≤0,02, никель - остальное до 100%.

Разработка заявляемого состава жаропрочного никелевого сплава с поликристаллической структурой, позволяющего получить заявляемый технический результат, основана на следующем.

Из уровня техники, в частности из анализа результатов эксплуатации газотурбинной техники, известна важная роль границ зерен в процессе разрушения образцов из поликристаллических сплавов при их испытаниях на долговечность и усталость при температурах до 1000°С. Установлено, что при всех исследованных температурах зарождение статических и усталостных трещин происходит на границах зерен, причем при температурах до 800°С - трещины распространяются преимущественно вдоль границ зерен. При температурах 900°С трещины развиваются еще и по телу зерен, а при дальнейшем повышении температуры - трещины зарождаются в основном на окисленных карбидах на поверхности образцов.

Таким образом, для достижения заявляемого технического результата при выборе системы легирования поликристаллических жаропрочных никелевых сплавов особое внимание следует уделять состоянию границ зерен, а для этого целесообразно включение в систему легирования карбидообразующих и других элементов, стабилизирующих границы зерен, и необходима система поверхностно-активных элементов - микролегирующих добавок, образующих равновесные сегрегации на структурных дефектах и тем самым снижающих энергию границ зерен при их сочетании с остальными элементами, входящими в состав сплава.

Количество и состав микролегирующих добавок влияет не только на границы зерен в сплаве, но оказывает благоприятное воздействие и на другие дефекты кристаллической структуры, например, на антифазные границы в упорядоченной структуре γ'-фазы, возникающие при перерезании частиц упрочняющей γ'-фазы дислокациями в процессе ползучести, и, следовательно, сплав должен быть сбалансирован как по составу микролегиующих элементов, так и по характеру их взаимодействия с остальными компонентами сплава. Количество и состав микролегирующих добавок зависит от состава и количества других компонентов, входящих в состав сплава, и определяется, например, расчетным путем. Количество вводимых в сплав углерода и карбидообразующих компонентов также должно быть сбалансировано, так как углерод является обязательным карбидообразующим элементом, а на карбидах возможно зарождение трещин, приводящих к разрушению сплавов.

При анализе системы легирования как известных, так и вновь разрабатываемых жаропрочных сплавов с поликристаллической структурой с целью последующей корректировки их химического состава возможно использование различных подходов. В частности, можно оценивать склонность сплава к образованию охрупчивающих ТПУ-фаз. Для этого обычно оценивают сбалансированность химического состава сплава по методу РНАСОМР.

Карбидообразующими элементами в заявляемом составе жаропрочного никелевого сплава с поликристаллической структурой являются: углерод, хром, вольфрам, ниобий, титан и молибден. Микролегирующие элементы: бор, лантан, иттрий и церий. Жаропрочный никелевый сплав с поликристаллической структурой получают смешиванием компонентов состава сплава в указанных в формуле изобретения количествах в соответствии с известными методами изготовления никелевых жаропрочных сплавов.

Состав заявляемого жаропрочного никелевого сплава с поликристаллической структурой, с заявляемым составом компонентов и в указанных количественных диапазонах их содержания сбалансирован в соответствии с изложенным выше. Ведение в состав сплава хрома на нижнем пределе (3%) обеспечивает минимальный приемлемый уровень жаростойкости сплава, работающего в условиях температуры до 1000°С, а увеличение содержание хрома выше 7% приводит к неконтролируемому образованию σ-фазы, особенно при длительной наработке, что вызывает его преждевременное разрушение. Введение в состав сплава кобальта в заявляемых количествах 4,0-8,5% улучшает пластичность, литейные свойства сплава, а также его стойкость в условиях воздействия солевого тумана. Если кобальта менее 4% - данный эффект практически отсутствует, если кобальта более 8,5% - улучшения свойств не происходит. Увеличение содержания вольфрама до 11,5-15,0% по сравнению с прототипом приводит к повышению характеристик жаропрочности и структурной стабильности сплава. При уменьшении количества вольфрама менее 11,5% - данный эффект заметно снижается, при содержании в сплаве вольфрама в количестве более 15% - происходит образование фаз α - вольфрам и карбидов типа Ni3W3C, т.е. введение дополнительного к верхнему пределу количества вольфрама не только не упрочняет сплав, но и приводит к его разрушению. Алюминий и титан - это основные γ'-образующие элементы, количество которых, с одной стороны, обеспечивает образование необходимого содержания упрочняющей γ'-фазы, а с другой стороны, ограничивает объем избыточной эвтектики (γ'+γ). Ниобий и молибден - обеспечивают повышение долговечности материала в области температур до 1000°С. Углерод вводится в состав сплава для образования второй упрочняющей фазы жаропрочных сплавов - карбидов. Суммарное содержание в заявляемом сплаве углерода и карбидообразующих элементов обеспечивает отсутствие охрупчивающих ТПУ-фаз.

Для апробации сплава были выплавлены три состава сплава (два заявляемых и один сплав прототип - ЖС-6У), содержащие компоненты (в мас.%), приведенные в Таблице 1. Предлагаемый сплав выплавляли по стандартной технологии с использованием компонентов заявляемого состава сплава в указанных в формуле изобретения диапазонах.

Таблица 1.
№ плавкиХимический состав, в мас.%
CrСоСWAlNbNiTiМоВLaYСе
15,905,340,1412,95,400,7Осн2,90,80,020,020,020,02
25,625,110,1312,75,460,6Осн2,61,00,020,020,020,02
ЖС-6У8,609,900,1810,205,600,9Осн2,41,30,035Zr-0,040,010,025

После чего литые образцы без последующей механической обработка испытывались. Результаты испытаний приведены в Таблице 2.

Таблица 2.
Номер плавки100-часовая прочность (МПА) при Т-1012°С100-часовая прочность (МПА) при Т=900°С100-часовая прочность (МПА) при Т=850°С100-часовая прочность (МПА) при Т-800°С
1160386546682
2158372532675
ЖС-6У170352455562

Приведенные результаты испытаний показывают, что по сравнению с прототипом заявляемый сплав обеспечивает достижение заявляемого технического результата, а именно - повышение прочностных характеристик никелевых жаропрочных поликристаллических сплавов на основе никеля, таких как предел сточасовой прочности и стабильность сплава при температурах не выше 1000°С.

Составлитейногожаропрочногосплаванаосновеникеля,включающийникель,хром,кобальт,углерод,вольфрам,алюминий,ниобий,титан,молибден,борицерий,отличающийсятем,чтоондополнительносодержитлантанииттрийприследующемсоотношениикомпонентов,мас.%:хром3,0-7,0кобальт4,0-8,5вольфрам11,5-15,0углерод0,1-0,2алюминий4,8-5,8ниобий0,4-1,0титан2,0-3,0молибден0,5-1,0бор≤0,025лантан≤0,02иттрий≤0,02церий≤0,02никельостальноедо100%.c0c1211none530
Источник поступления информации: Роспатент

Показаны записи 51-52 из 52.
10.07.2019
№219.017.ad5e

Состав жаропрочного никелевого сплава (варианты)

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002353691
Дата охранного документа: 27.04.2009
10.07.2019
№219.017.adcf

Система подачи топлива в двигатель летательного аппарата

Изобретение относится к насосным агрегатам для подачи топлива в силовую установку летательного аппарата. Система содержит насос низкого давления, вход которого соединен с источником топлива, пусковой насос, золотниковый переключатель потоков, связанный с регулятором режима работы двигателя...
Тип: Изобретение
Номер охранного документа: 0002374144
Дата охранного документа: 27.11.2009
Показаны записи 51-60 из 87.
18.05.2019
№219.017.540e

Смесь для изготовления литейных керамических стержней

Изобретение относится к литейному производству и может быть использовано при изготовлении изделий из жаропрочных сплавов, преимущественно лопаток газотурбинных двигателей (ГТД). Смесь в качестве основного компонента содержит порошок твердого раствора на основе плавленого SiO, содержащего от 5...
Тип: Изобретение
Номер охранного документа: 0002273543
Дата охранного документа: 10.04.2006
18.05.2019
№219.017.5750

Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя

Изобретение относится к турбомашиностроению и может быть использовано при восстановлении изношенных поверхностей гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя. Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002354523
Дата охранного документа: 10.05.2009
18.05.2019
№219.017.588a

Охлаждаемая лопатка турбомашины

Охлаждаемая лопатка турбомашины содержит перо с полостью и каналом охлаждения входной кромки пера, сообщенным чередующимися по его длине входными и выходными каналами соответственно с полостью пера и с окружающим пространством со стороны спинки профиля пера. Выходные каналы выполнены...
Тип: Изобретение
Номер охранного документа: 0002362020
Дата охранного документа: 20.07.2009
18.05.2019
№219.017.58ae

Двигатель для летательного аппарата

Двигатель для летательного аппарата, содержащий выполненный в виде кольцевого канала внешний контур и внутренний контур с компрессором, подсоединенным к устройству для его привода, и с камерой сгорания и форсажную камеру. Двигатель дополнительно содержит расположенный за компрессором...
Тип: Изобретение
Номер охранного документа: 0002323362
Дата охранного документа: 27.04.2008
20.05.2019
№219.017.5c56

Установка для опреснения морской воды и выработки электроэнергии

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с...
Тип: Изобретение
Номер охранного документа: 0002687922
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5cc5

Комплексная установка для опреснения морской воды и выработки электроэнергии

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель,...
Тип: Изобретение
Номер охранного документа: 0002687914
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.641a

Установка для опреснения соленой воды и способ опреснения соленой воды с использованием установки

Изобретение относится к опреснению соленой воды дистилляцией и может быть использовано для локального водоснабжения малых населенных пунктов. Установка для опреснения соленой воды, содержит модуль очистки исходной воды, модуль предотвращения накипеобразования, группу модулей нагрева воды,...
Тип: Изобретение
Номер охранного документа: 0002280011
Дата охранного документа: 20.07.2006
09.06.2019
№219.017.7939

Измерительное устройство для контроля пазов деталей

Изобретение относится к измерительной технике и может быть использовано для контроля изготовленных в деталях пазов, в том числе трапециевидных типа «ласточкин хвост». Измерительное устройство для контроля пазов деталей содержит корпус с рядом подпружиненных стержней и контактных элементов....
Тип: Изобретение
Номер охранного документа: 0002345321
Дата охранного документа: 27.01.2009
09.06.2019
№219.017.7a64

Высокотемпературный композиционный материал для уплотнительного покрытия

Изобретение относится к области порошковой металлургии и может быть использовано для получения высокотемпературного уплотнительного композиционного покрытия методом газотермического напыления при производстве газотурбинных двигателей для обеспечения стабильности зазоров в сопряженных элементах...
Тип: Изобретение
Номер охранного документа: 0002386513
Дата охранного документа: 20.04.2010
09.06.2019
№219.017.7ac5

Свеча зажигания

Изобретение относится к конструкции свечей зажигания, предназначенных для воспламенения топливных смесей, в том числе обедненных, в газотурбинных двигателях (ГТД) как энергетического, так и транспортного назначения. Свеча зажигания содержит два электрода, разделенные изолятором и образующие...
Тип: Изобретение
Номер охранного документа: 0002352040
Дата охранного документа: 10.04.2009
+ добавить свой РИД