×
29.04.2019
219.017.3f26

Результат интеллектуальной деятельности: МАГНИТНАЯ ОПОРА ВЕРТИКАЛЬНОГО РОТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и, преимущественно, к магнитным опорам вертикальных роторов быстровращающихся приборов, накопителей энергии, центрифуг, в которых верхняя магнитная опора ротора обеспечивает радиальную жесткость и центровку ротора относительно корпуса и, одновременно, разгружает нижнюю опору от осевой нагрузки. Магнитная опора включает установленный в корпусе кольцевой аксиально намагниченный магнит с полюсным наконечником и размещенную на роторе ферромагнитную втулку, расположенную напротив нижнего торца магнита. Причем в магнитной опоре отношение наружного диаметра магнита к среднему диаметру ферромагнитной втулки составляет 1,2-1,5, отношение внутреннего диаметра магнита к среднему диаметру ферромагнитной втулки составляет 0,8-0,9, а отношение высоты магнита к его среднему диаметру составляет 0,1-0,4. Целесообразно, чтобы магнит был установлен по оси с минимальным зазором по посадочной поверхности корпуса. Изобретение улучшает параметры опоры за счет оптимизации массогабаритных показателей магнита из редкоземельных элементов. 1 з.п.ф-лы, 2 ил.

Изобретение относится к машиностроению и, преимущественно, к магнитным опорам вертикальных роторов быстровращающихся приборов, накопителей энергии, центрифуг, в которых верхняя магнитная опора ротора обеспечивает радиальную жесткость и центровку ротора относительно корпуса и, одновременно, разгружает нижнюю опору от осевой нагрузки.

Известна магнитная опора ротора центрифуги, в которой на роторе расположена ферромагнитная насадка, а расположенный над ней аксиально намагниченный статорный магнит с полюсным наконечником установлен на крышке корпуса с кольцевым зазором для возможности его перемещения в горизонтальной плоскости и центровки ротора (патент РФ №2115482).

Такая магнитная опора позволяет обеспечить хорошую центровку ротора относительно крышки корпуса, но требует дополнительной технологической операции для каждого изделия, что осложняет серийный выпуск продукции.

Ближайшим техническим решением к предложенному является магнитная опора, содержащая ферромагнитную втулку, закрепленную соосно на роторе, кольцевой аксиально намагниченный магнит, установленный в корпусе над втулкой, и полюсный наконечник в виде кольца с радиальной полкой у торца, примыкающего к нижнему торцу магнита. Ферромагнитная втулка выполнена с кольцевым радиальным выступом, толщина которого равна 0,5-1,5 толщины стенки втулки, а его высота равна 0,1-0,3 высоты втулки, а наружный диаметр радиальной полки полюсного наконечника равен 0,92-0,95 среднего диаметра кольцевого магнита (патент РФ №2054334).

Это изобретение повышает жесткость магнитной опоры и снижает давление на нижнюю опору, но не дает рекомендаций по выбору размеров магнита, являющегося основным элементом магнитной опоры - носителем магнитной энергии, оптимизация которого вносит существенную вклад в параметры магнитной системы. Особенно, и в первую очередь, это относится к магнитам из редкоземельных материалов, например, на основе системы неодим-железо-бор.

Технический результат изобретения заключается в уменьшении нагрузки на нижнюю опору ротора при одновременном увеличении радиальной жесткости верхней магнитной опоры ротора, а также улучшении его центровки без ухудшения массогабаритных показателей и усложнения конструкции опоры путем выбора рациональной формы и соотношения размеров магнита и взаимного расположения ее элементов.

Для этого в магнитной опоре вертикального ротора, включающей установленный в корпусе кольцевой аксиально намагниченный магнит с полюсным наконечником и размещенную на роторе ферромагнитную втулку, расположенную напротив нижнего торца магнита, отношение наружного диаметра магнита к среднему диаметру верхнего конца ферромагнитной втулки составляет 1,2-1,5, отношение внутреннего диаметра магнита к среднему диаметру верхнего конца ферромагнитной втулки составляет 0,8-0,9, а отношение высоты магнита к его среднему диаметру составляет 0,1-0,4.

Кроме того, в магнитной опоре вертикального ротора магнит установлен по оси корпуса с минимальным зазором по посадочной поверхности корпуса.

Изобретение поясняется чертежами: фиг.1 - продольный разрез магнитной опоры вертикального ротора, фиг.2 - график зависимостей нагрузки на нижнюю опору ротора и радиальной жесткости верхней магнитной опоры ротора от размеров магнита и ферромагнитной втулки.

В немагнитном корпусе 1 (см. фиг.1) установлен аксиально намагниченный кольцевой магнит 2 с ферромагнитным полюсным наконечником 3. Ферромагнитная втулка 4 закреплена на роторе 5 соосно с ним в его верхней части и расположена напротив нижнего торца магнита 2. Ротор 5 опирается на нижнюю опору 6, а в верхней магнитной опоре не имеет механического контакта с неподвижными деталями.

Верхний конец ферромагнитной втулки 4 имеет внутренний диаметр dВ и наружный диаметр dH, так что средний диаметр верхнего конца ферромагнитной втулки 4 составляет dCP=(dВ+dH)/2. Отношение наружного диаметра dН магнита 2 к среднему диаметру dCP ферромагнитной втулки 4 составляет 1,2-1,5, т.е. выполняется соотношение DН/dCP=1,2-1,5, отношение внутреннего диаметра DВ магнита 2 к среднему диаметру dCP ферромагнитной втулки 4 составляет 0,8-0,9, т.е. выполняется соотношение DВ/dCP=0,8-0,9, а отношение высоты Н магнита 2 к его среднему диаметру DCP=(DВ+DН)/2 составляет 0,1-0,4, т.е. выполняется соотношение H/DCP=0,1-0,4. При этом магнит 2 установлен по оси центрифуги с минимальным зазором по посадочной поверхности корпуса, т.е. внутренний диаметр DВ магнита 2 выполнен с наибольшей точностью, которая определяет необходимый уровень центровки верхнего конца ферромагнитной втулки 4 ротора 5 относительно корпуса 1.

Кольцевой магнит 2 создает осесимметричное магнитное поле, сила притяжения которого через ферромагнитную втулку 4 разгружает нижнюю опору 6 от части силы веса ротора и обеспечивает верхней опоре радиальную жесткость, то есть способность противодействовать угловым относительно нижней опоры отклонениям ротора. Магнитный поток между полюсами магнита 2 замыкается через полюсный наконечник 3 и ферромагнитную втулку 4.

Магнитная опора работает следующим образом.

В покое и при вращении ротора 5 осесимметричное магнитное поле магнита 2 удерживает ферромагнитную втулку 4 и связанный с ней ротор 5 в вертикальном стационарном положении, не препятствуя вращению ротора 5 на опоре 6. В случае отклонения ротора от оси корпуса 1 симметричность магнитного поля нарушается, что создает радиальную силу, препятствующую отклонению ротора 5 и возвращающую ротор 5 в исходное положение при прекращении действия возмущающей силы.

Благодаря выбору геометрических параметров магнита 2 в предлагаемых диапазонах предпочтительных значений в отношении ферромагнитной втулки 4 обеспечивается повышенная концентрация магнитного потока в зазоре между втулкой 4 и наконечником 3 и обеспечивается оптимальное соотношение нагрузки на опору 6 и поперечной жесткости магнитной опоры.

Расчетные и экспериментальные исследования показали, что выбор геометрических размеров магнита 2 вне указанных диапазонов размеров магнита ухудшает рабочие параметры магнитной опоры. Из зависимостей на фиг.2 видно, что при Dh/dCP<1,2 нагрузка на опору резко увеличивается, а поперечная жесткость практически не меняется, при DH/dCP>1,5 нагрузка на опору практически не меняется, а поперечная жесткость резко падает, несмотря на то, что происходит увеличение массы и энергии дорогостоящего магнита.

Это связано с тем, что относительное увеличение или уменьшение размеров магнита приводит к необходимости увеличения или уменьшения размера зазора между концом ферромагнитной втулки 4 и наконечником 3, величина которого нелинейно и разнонаправленно влияет на нагрузку в нижней опоре и поперечную жесткость магнитной опоры.

Для магнитной опоры с DВ/dCP=0,8-0,9 магнитная ось опоры, оказывается, практически совпадает, при существующем разбросе свойств и параметров изготовления, с геометрической осью внутреннего диаметра магнита 2, т.о. центровка ротора обеспечивается расположением внутреннего диаметра магнита 2 и, следовательно, качеством выполнения и посадки этого диаметра в корпусе 1.

Кроме того, за счет минимального посадочного зазора между магнитом 2 и посадочным местом корпуса, обеспечивается геометрическая центровка ротора 5, устанавливающегося по магнитной оси магнита 2, которая в этом случае точно (до величины допуска на изготовление внутреннего диаметра DВ магнита 2 и посадочного места корпуса) совпадает с осью корпуса 1, что повышает надежность и долговечность работы ротора. Этот эффект геометрической центровки особенно проявляется в редкоземельных энергоемких магнитах с оптимизированными по настоящему изобретению соотношениями геометрических размерами втулки и магнита, в которых магнитный поток значительно более сконцентрирован.

1.Магнитнаяопоравертикальногоротора,включающаяустановленныйвкорпусекольцевойаксиальнонамагниченныймагнитсполюснымнаконечникомиразмещеннуюнаротореферромагнитнуювтулку,расположеннуюнапротивнижнеготорцамагнита,отличающаясятем,чтоотношениенаружногодиаметрамагнитаксреднемудиаметруверхнегоконцаферромагнитнойвтулкисоставляет1,2...1,5,отношениевнутреннегодиаметрамагнитаксреднемудиаметруверхнегоконцаферромагнитнойвтулкисоставляет0,8...0,9,аотношениевысотымагнитакегосреднемудиаметрусоставляет0,1...0,4.12.Магнитнаяопоравертикальногороторапоп.1,отличающаясятем,чтомагнитустановленпоосикорпусасминимальнымзазоромпопосадочнойповерхностикорпуса.2
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
23.02.2019
№219.016.c747

Регулятор давления газа

Изобретение относится к области приборостроения и может быть использовано в устройствах регулирования давления газа. Техническим результатом является повышение точности поддержания регулируемых давлений при изменении давления и расхода рабочего газа путем обеспечения работы в режимах "после...
Тип: Изобретение
Номер охранного документа: 02231105
Дата охранного документа: 20.06.2004
23.02.2019
№219.016.c749

Магнитный подшипник

Магнитный подшипник содержит ротор из магнитного материала, присоединенный к валу, статор из магнитного материала, расположенный напротив ротора, и подвижный элемент из магнитного материала, установленный между ними. Подвижный элемент подшипника выполнен в виде шариков, свободно расположенных в...
Тип: Изобретение
Номер охранного документа: 02237201
Дата охранного документа: 27.09.2004
23.02.2019
№219.016.c74c

Устройство для формования сильфона

Изобретение относится к обработке металлов давлением и может быть использовано при холодной штамповке сильфонов из тонкостенных цилиндрических заготовок. Устройство для формования сильфона содержит матрицу, нажимные крышки и гидравлическую головку с манжетой и разделительными прокладками. По...
Тип: Изобретение
Номер охранного документа: 02229356
Дата охранного документа: 27.05.2004
08.03.2019
№219.016.d495

Способ получения высокообогащенных изотопов ванадия

Изобретение может быть использовано при проведении физических исследований. Получают оксихлорид ванадия из соединения с концентрацией изотопа хлор-35 не ниже 85%. Для получения повышенной концентрации изотопа хлор-35 можно использовать двухфазный физико-химический метод разделения в аппаратах...
Тип: Изобретение
Номер охранного документа: 02226424
Дата охранного документа: 10.04.2004
29.03.2019
№219.016.f454

Агрегат газовых центрифуг

Агрегат газовых центрифуг относится к устройствам для непрерывного разделения смесей газов с различными молекулярными массами, к агрегатам газовых центрифуг, из которых формируются многоступенчатые каскады на разделительных предприятиях. Агрегат газовых центрифуг содержит установленные двумя...
Тип: Изобретение
Номер охранного документа: 0002327527
Дата охранного документа: 27.06.2008
10.04.2019
№219.017.01cd

Мартенситностареющая сталь и изделие, выполненное из нее

Изобретение относится к металлургии, а именно к составам высокопрочных мартенситностареющих сталей, а также к изделиям, выполненным из них. Сталь содержит следующие компоненты, мас.%: углерод 0,005-0,02; никель 15-20,0; кобальт 11,5-13,5; молибден 3,5-5,0; титан 0,5-2,0; алюминий 0,05-1,80; бор...
Тип: Изобретение
Номер охранного документа: 02219276
Дата охранного документа: 20.12.2003
29.04.2019
№219.017.3ea7

Магнитная опора вертикального ротора

Предложенное устройство относится к верхним магнитным опорам высокооборотных роторов с вертикальной осью вращения, посредством которых роторы удерживаются в вертикальном положении, например, роторов накопителей энергии, центрифуг, гироскопов и подобных устройств. Опора включает ферромагнитное...
Тип: Изобретение
Номер охранного документа: 0002265757
Дата охранного документа: 10.12.2005
29.04.2019
№219.017.4323

Агрегат газовых центрифуг

Изобретение относится к устройствам для непрерывного разделения смесей газов с различными молекулярными массами в поле центробежных сил, а именно к агрегатам газовых центрифуг, из которых формируются многоступенчатые каскады на разделительных предприятиях. Агрегат газовых центрифуг включает в...
Тип: Изобретение
Номер охранного документа: 0002323049
Дата охранного документа: 27.04.2008
09.05.2019
№219.017.4a6f

Магнитная опора вертикального ротора

Предложенное решение относится к машиностроению, а именно к магнитным опорам вертикальных роторов быстровращающихся приборов, гироскопов, накопителей энергии, центрифуг, генераторов, турбомолекулярных насосов и подобных устройств. Предложенная магнитная опора содержит кольцевой аксиально...
Тип: Изобретение
Номер охранного документа: 0002272676
Дата охранного документа: 27.03.2006
09.05.2019
№219.017.4a74

Устройство для измерения внутреннего диаметра тонкостенной цилиндрической детали

Устройство выполнено в виде емкостного датчика, образованного двумя изолированными плоскими токопроводящими кольцами. Кольца концентрично установлены в корпусе из изоляционного материала и раздвинуты одно от другого в осевом направлении. Нижнее кольцо предназначено для установки на него торца...
Тип: Изобретение
Номер охранного документа: 0002272989
Дата охранного документа: 27.03.2006
Показаны записи 1-9 из 9.
23.02.2019
№219.016.c747

Регулятор давления газа

Изобретение относится к области приборостроения и может быть использовано в устройствах регулирования давления газа. Техническим результатом является повышение точности поддержания регулируемых давлений при изменении давления и расхода рабочего газа путем обеспечения работы в режимах "после...
Тип: Изобретение
Номер охранного документа: 02231105
Дата охранного документа: 20.06.2004
23.02.2019
№219.016.c749

Магнитный подшипник

Магнитный подшипник содержит ротор из магнитного материала, присоединенный к валу, статор из магнитного материала, расположенный напротив ротора, и подвижный элемент из магнитного материала, установленный между ними. Подвижный элемент подшипника выполнен в виде шариков, свободно расположенных в...
Тип: Изобретение
Номер охранного документа: 02237201
Дата охранного документа: 27.09.2004
23.02.2019
№219.016.c74c

Устройство для формования сильфона

Изобретение относится к обработке металлов давлением и может быть использовано при холодной штамповке сильфонов из тонкостенных цилиндрических заготовок. Устройство для формования сильфона содержит матрицу, нажимные крышки и гидравлическую головку с манжетой и разделительными прокладками. По...
Тип: Изобретение
Номер охранного документа: 02229356
Дата охранного документа: 27.05.2004
08.03.2019
№219.016.d495

Способ получения высокообогащенных изотопов ванадия

Изобретение может быть использовано при проведении физических исследований. Получают оксихлорид ванадия из соединения с концентрацией изотопа хлор-35 не ниже 85%. Для получения повышенной концентрации изотопа хлор-35 можно использовать двухфазный физико-химический метод разделения в аппаратах...
Тип: Изобретение
Номер охранного документа: 02226424
Дата охранного документа: 10.04.2004
10.04.2019
№219.017.01cd

Мартенситностареющая сталь и изделие, выполненное из нее

Изобретение относится к металлургии, а именно к составам высокопрочных мартенситностареющих сталей, а также к изделиям, выполненным из них. Сталь содержит следующие компоненты, мас.%: углерод 0,005-0,02; никель 15-20,0; кобальт 11,5-13,5; молибден 3,5-5,0; титан 0,5-2,0; алюминий 0,05-1,80; бор...
Тип: Изобретение
Номер охранного документа: 02219276
Дата охранного документа: 20.12.2003
10.04.2019
№219.017.0a4b

Магнитная опора вертикального ротора

Изобретение относится к верхней магнитной опоре ротора с вертикальной осью вращения. Магнитная опора содержит установленный в корпусе цилиндрический аксиально намагниченный магнит, размещенную на роторе соосно ферромагнитную втулку, расположенную напротив нижнего торца магнита, и кольцевую...
Тип: Изобретение
Номер охранного документа: 02178343
Дата охранного документа: 20.01.2002
29.04.2019
№219.017.3ea7

Магнитная опора вертикального ротора

Предложенное устройство относится к верхним магнитным опорам высокооборотных роторов с вертикальной осью вращения, посредством которых роторы удерживаются в вертикальном положении, например, роторов накопителей энергии, центрифуг, гироскопов и подобных устройств. Опора включает ферромагнитное...
Тип: Изобретение
Номер охранного документа: 0002265757
Дата охранного документа: 10.12.2005
09.05.2019
№219.017.5116

Способ изготовления одногофрового сильфона

Изобретение относится к способу изготовления одногофрового сильфона с цилиндрическими обечайками. При способе изготовления одногофровых сильфонов с цилиндрическими обечайками, включающем радиальную формовку гофра из трубной заготовки и ее осевую осадку в матрице с приложением внутреннего...
Тип: Изобретение
Номер охранного документа: 02192325
Дата охранного документа: 10.11.2002
19.06.2019
№219.017.84d3

Способ термической правки изделий

Изобретение относится к области обработки металлов давлением, в частности к способам термической правки кольцевых фланцевых изделий, и может быть использовано при изготовлении тонкостенных труб с высокой точностью. Техническим результатом изобретения является одновременная термическая правка...
Тип: Изобретение
Номер охранного документа: 0002249630
Дата охранного документа: 10.04.2005
+ добавить свой РИД