×
27.04.2019
219.017.3de6

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002252406
Дата охранного документа
20.05.2005
Аннотация: Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей на закрытых стендах, и может найти применение в авиационной промышленности. Изобретение позволяет повысить достоверность результатов испытаний путем уменьшения погрешности определения величины тяги двигателя. В способе испытания газотурбинного двигателя, включающем определение величины приведенной тяги двигателя на закрытом стенде с помощью лемнискатного насадка, дополнительно измеряют величину приведенной тяги при отсоединенном лемнискатном насадке и определяют величину поправки на входной импульс стендовой тяги как разность величин тяг, определенных с помощью лемнискатного насадка и при отсоединенном лемнискатным насадке. 2 ил.

Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей на закрытых стендах, и может найти применение в авиационной промышленности.

Известен способ испытания газотурбинного двигателя, включающий измерение тяги двигателя с помощью лемнискатного насадка (см. Л.С.Скубачевский “Испытания воздушно-реактивных двигателей”, Москва, Машиностроение, 1972, стр.17).

Недостатком данного способа является недостаточная точность определения величины измеряемой тяги двигателя. Низкая точность определения величины измеряемой тяги двигателя обуславливается сложностью определения величины входного импульса Iвх.пр.=Gв*V (где Gв - расход воздуха через двигатель, V - скорость потока воздуха в боксе испытательного стенда перед лемнискатным насадком) потока воздуха перед лемнискатным насадком. Сложность определения заключается в том, что если расход воздуха G через двигатель определяется путем измерения параметров в специальном расходомерном коллекторе (РМК) с точностью до 0,5-0,7%, то определение скорости потока перед лемнискатным насадком - задача неоднозначная. Для измерения скорости V необходима специальная система измерений, зависящая от конструкции стенда, расположения двигателя относительно всасывающей шахты, полей скоростей потока, наличия зон отрыва, т.е. для каждой компоновки двигателя на стенде необходимо подобрать свою систему измерений, при этом погрешность определения входного импульса может достигать 20-25%.

Повысить точность определения величины измеряемой тяги двигателя можно, определив величину приведенной поправки на входной импульс.

Задача изобретения - повышение достоверности результатов испытаний путем уменьшения погрешности определения величины тяги двигателя.

Указанная задача достигается тем, что в способе испытания газотурбинного двигателя, включающем определение величины приведенной тяги двигателя на закрытом стенде с помощью лемнискатного насадка, согласно изобретению дополнительно измеряют величину приведенной тяги при отсоединенном лемнискатном насадке и определяют величину приведенной поправки на входной импульс стендовой тяги как разность величин тяг, определенных при отсоединенном лемнискатным насадке и с помощью лемнискатного насадка.

На фиг.1 представлена схема расположения двигателя на стенде в компоновке с лемнискатным насадком;

на фиг.2 - схема расположения двигателя на стенде в компоновке с отсоединенным лемнискатным насадком.

Закрытый испытательный стенд содержит бокс 1, размещенный в нем испытуемый двигатель 2, лемнискатный насадок 3, силоизмерительную систему (СИС) 4, расходомерный коллектор (РМК) 5, лабиринтное уплотнение 6, входную шахту 7 и шахту выхлопа 8. Скорость воздуха в сечении перед лемнискатным насадком обозначена V.

Средства измерения, включенные в СИС, не раскрываются, так как они известны, см., например, В.П.Волок “Испытательные стенды”, Москва, издательство Знание, 1980, стр.7-13.

Способ реализуется следующим образом.

Испытуемый двигатель 2 с присоединенным к нему лемнискатным насадком 3 устанавливают в боксе 1 на динамометрической платформе с силоизмерительной системой СИС 4. После этого проводят испытание двигателя для измерения с помощью СИС величины тяги двигателя. При этом следует учесть, что в величину Rст, получаемую по результатам замеров, входит неизвестная величина приведенной поправки на входной импульс стендовой тяги.

Приведенная тяга двигателя Rдв.пр определяется на основании общеизвестной формулы:

где R - тяга двигателя, измеряемая СИС;

F*c - измеренная площадь выходного сечения сопла двигателя;

Р*вх - измеренное полное давление воздуха в сечении перед двигателем;

Pб - измеренное давление в боксе;

ΔRпар - поправка от аэродинамического сопротивления двигателя, коммуникаций и стендового оборудования, размещенных на динамометрической платформе СИС стенда.

После определения величины тяги двигателя с помощью лемнискатного насадка повторяют испытание двигателя для измерения величины тяги двигателя с (только механически) отсоединенным лемнискатным насадком 3. Лемнискатный насадок 3 в этом случае остается присоединенным (по воздушному потоку) к двигателю с помощью лабиринтного уплотнения 6, ограничивающего проток воздуха из лемнискатного насадка 3 в бокс и обеспечивающего радиальный зазор между лемнискатным насадком 3 и РМК 5 (обычно до 1-2 мм) (см. фиг.2). Такая схема испытаний применяется, например, при измерении высотно-скоростных характеристик двигателей в термобарокамере ЦИАМ (смотри статья в Трудах ЦИАМ №602, 1973 г., стр.27-31).

В этом случае, на результаты замеров R не влияет величина приведенной поправки на входной импульс стендовой тяги, и приведенная тяга двигателя R0.дв.пр определяется на основании следующей общеизвестной формулы:

где R - тяга двигателя, измеряемая СИС;

G*в - измеренный массовый расход воздуха, измеряемый в РМК;

Vлаб - измеренная скорость воздуха в сечении лабиринтного уплотнения;

F*лаб - измеренная площадь лабиринтного уплотнения;

Рлаб - измеренное статическое давление воздуха в сечении лабиринтного уплотнения;

F*с - измеренная площадь выходного сечения сопла двигателя;

Р*вх - измеренное полное давление воздуха в сечении перед двигателем;

Pб - измеренное давление в боксе;

ΔRпар - поправка от аэродинамического сопротивления двигателя, коммуникаций и стендового оборудования, размещенных на динамометрической платформе СИС стенда.

Поскольку испытания двигателя проводятся на одном и том же стенде с помощью лемнискатного насадка 3 и при отсоединенном лемнискатном насадке 3, разницей в приведенных значениях величин поправок от аэродинамического сопротивления двигателя можно пренебречь. С учетом этого, после поэтапно проведенных испытаний двигателя для режимов работы NПР=const (бесфорсажные режимы) или αΣПР=const (форсажные режимы) двигателя определяют величину приведенной поправки на входной импульс стендовой тяги ΔRВУ. ПР по формуле

где Rо.дв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная при отсоединенном лемнискатном насадке;

Rдв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная с помощью лемнискатного насадка.

Определенная таким образом величина приведенной поправки на входной импульс ΔRву.пр учитывается при замере приведенной тяги двигателя Рпр отдельно для форсажного и бесфорсажного режимов, а именно

где ΔRву.пр - приведенная поправка на входной импульс стендовой тяги;

Rдв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная с помощью лемнискатного насадка. С учетом формул 4 и 1 получаем истинную тягу двигателя Rист = Rдв.пр К.

Таким образом, предложенный способ позволяет повысить достоверность результатов испытаний, уменьшив погрешность определения величины тяги двигателя, т.е. повысив точность измерения величины приведенной поправки к тяге на закрытом стенде, поскольку точность измерения тяги в компоновке с отсоединенной лемнискатой не превышает 0,5% (смотри статья в Трудах ЦИАМ №602, 1973 г., стр.37).

Способиспытаниягазотурбинногодвигателя,включающийопределениевеличиныприведеннойтягидвигателяназакрытомстендеспомощьюлемнискатногонасадка,отличающийсятем,чтодополнительноизмеряютвеличинуприведеннойтягиприотсоединенномлемнискатномнасадкеиопределяютвеличинуприведеннойпоправкинавходнойимпульсстендовойтягикакразностьвеличинсилтяг,определенныхприотсоединенномлемнискатномнасадкеиспомощьюлемнискатногонасадка.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 86.
09.06.2019
№219.017.7a95

Легкоплавкий сплав

Изобретение относится к металлообработке и может быть использовано при изготовлении лопаток ГТД. Легкоплавкий сплав на основе висмута для закрепления маложестких деталей при их механической обработке включает олово (40,5-41,5 мас.%), кадмий (2,5-3,5 мас.%), висмут - остальное. Сплав сохраняет...
Тип: Изобретение
Номер охранного документа: 0002354732
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7a99

Способ изготовления вкладышей опорного подшипника скольжения

Изобретение относится к области машиностроения и может быть использовано при изготовлении вкладышей опорного подшипника скольжения. Способ изготовления вкладыша опорного подшипника скольжения с антифрикционным фторопластовым слоем включает предварительный изгиб заготовки вкладыша и...
Тип: Изобретение
Номер охранного документа: 0002354863
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7a9c

Способ определения остаточных напряжений

Предложенное изобретение относится к области машиностроения и предназначено для определения остаточных напряжений при применении упрочняющих технологий поверхностным пластическим деформированием для повышения сопротивления усталости сложно нагруженных деталей. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002354952
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7ac5

Свеча зажигания

Изобретение относится к конструкции свечей зажигания, предназначенных для воспламенения топливных смесей, в том числе обедненных, в газотурбинных двигателях (ГТД) как энергетического, так и транспортного назначения. Свеча зажигания содержит два электрода, разделенные изолятором и образующие...
Тип: Изобретение
Номер охранного документа: 0002352040
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7ad6

Гидрореактивный движитель

Изобретение относится к жидкостным реактивным движителям, в которых реактивная струя создается с помощью насосов и импульсов давления, воздействующих на столб жидкости, преимущественно при воспламенении газовой или паровой смеси. Изобретение может быть использовано на маломерных судах и других...
Тип: Изобретение
Номер охранного документа: 0002355600
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7b42

Способ получения графитированного материала

Изобретение может быть использовано при изготовлении уплотнений для двигателей и установок для перекачки газа. Пековый или сланцевый смоляной кокс с выходом летучих веществ 3,0-9,0 мас.% измельчают до получения фракционного состава, в котором не менее 95 мас.% составляет фракция с размером...
Тип: Изобретение
Номер охранного документа: 0002374174
Дата охранного документа: 27.11.2009
09.06.2019
№219.017.7bcd

Роликолопастной компрессор

Изобретение относится к машиностроению, в частности, к ролико-лопастным компрессорам. Ролико-лопастной компрессор содержит полый корпус с выполненными в нем двумя подводящими каналами рабочей среды, один из которых сообщен с источником рабочей среды, и двумя отводящими каналами рабочей среды,...
Тип: Изобретение
Номер охранного документа: 0002301344
Дата охранного документа: 20.06.2007
09.06.2019
№219.017.7c18

Модуль сверхпроводящего резистивного ограничителя тока (варианты)

Изобретение относится к области электротехники, в частности к модулю сверхпроводящего резистивного ограничителя тока и его варианту, которые предназначены для защиты от перегрузок и токов короткого замыкания в сети. Модуль сверхпроводящего резистивного ограничителя тока по первому варианту...
Тип: Изобретение
Номер охранного документа: 0002366056
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7c83

Система управления соплом с регулируемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к системам автоматического управления авиационных газотурбинных двигателей (ГТД), в частности к системам управления соплом с регулируемым вектором тяги. Технический результат - повышение надежности системы путем введения средств обеспечения перевода сопла в осесимметричное...
Тип: Изобретение
Номер охранного документа: 0002326258
Дата охранного документа: 10.06.2008
09.06.2019
№219.017.7c96

Способ очистки топливного коллектора газотурбинного двигателя от коксовых отложений и нагара

Изобретение относится к очистке изделий от коксовых отложений и нагара, в частности к очистке топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, судостроении, энергетическом...
Тип: Изобретение
Номер охранного документа: 0002325606
Дата охранного документа: 27.05.2008
+ добавить свой РИД