×
27.04.2019
219.017.3de6

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002252406
Дата охранного документа
20.05.2005
Аннотация: Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей на закрытых стендах, и может найти применение в авиационной промышленности. Изобретение позволяет повысить достоверность результатов испытаний путем уменьшения погрешности определения величины тяги двигателя. В способе испытания газотурбинного двигателя, включающем определение величины приведенной тяги двигателя на закрытом стенде с помощью лемнискатного насадка, дополнительно измеряют величину приведенной тяги при отсоединенном лемнискатном насадке и определяют величину поправки на входной импульс стендовой тяги как разность величин тяг, определенных с помощью лемнискатного насадка и при отсоединенном лемнискатным насадке. 2 ил.

Изобретение относится к испытаниям газотурбинных двигателей, в частности к способам испытаний газотурбинных двигателей на закрытых стендах, и может найти применение в авиационной промышленности.

Известен способ испытания газотурбинного двигателя, включающий измерение тяги двигателя с помощью лемнискатного насадка (см. Л.С.Скубачевский “Испытания воздушно-реактивных двигателей”, Москва, Машиностроение, 1972, стр.17).

Недостатком данного способа является недостаточная точность определения величины измеряемой тяги двигателя. Низкая точность определения величины измеряемой тяги двигателя обуславливается сложностью определения величины входного импульса Iвх.пр.=Gв*V (где Gв - расход воздуха через двигатель, V - скорость потока воздуха в боксе испытательного стенда перед лемнискатным насадком) потока воздуха перед лемнискатным насадком. Сложность определения заключается в том, что если расход воздуха G через двигатель определяется путем измерения параметров в специальном расходомерном коллекторе (РМК) с точностью до 0,5-0,7%, то определение скорости потока перед лемнискатным насадком - задача неоднозначная. Для измерения скорости V необходима специальная система измерений, зависящая от конструкции стенда, расположения двигателя относительно всасывающей шахты, полей скоростей потока, наличия зон отрыва, т.е. для каждой компоновки двигателя на стенде необходимо подобрать свою систему измерений, при этом погрешность определения входного импульса может достигать 20-25%.

Повысить точность определения величины измеряемой тяги двигателя можно, определив величину приведенной поправки на входной импульс.

Задача изобретения - повышение достоверности результатов испытаний путем уменьшения погрешности определения величины тяги двигателя.

Указанная задача достигается тем, что в способе испытания газотурбинного двигателя, включающем определение величины приведенной тяги двигателя на закрытом стенде с помощью лемнискатного насадка, согласно изобретению дополнительно измеряют величину приведенной тяги при отсоединенном лемнискатном насадке и определяют величину приведенной поправки на входной импульс стендовой тяги как разность величин тяг, определенных при отсоединенном лемнискатным насадке и с помощью лемнискатного насадка.

На фиг.1 представлена схема расположения двигателя на стенде в компоновке с лемнискатным насадком;

на фиг.2 - схема расположения двигателя на стенде в компоновке с отсоединенным лемнискатным насадком.

Закрытый испытательный стенд содержит бокс 1, размещенный в нем испытуемый двигатель 2, лемнискатный насадок 3, силоизмерительную систему (СИС) 4, расходомерный коллектор (РМК) 5, лабиринтное уплотнение 6, входную шахту 7 и шахту выхлопа 8. Скорость воздуха в сечении перед лемнискатным насадком обозначена V.

Средства измерения, включенные в СИС, не раскрываются, так как они известны, см., например, В.П.Волок “Испытательные стенды”, Москва, издательство Знание, 1980, стр.7-13.

Способ реализуется следующим образом.

Испытуемый двигатель 2 с присоединенным к нему лемнискатным насадком 3 устанавливают в боксе 1 на динамометрической платформе с силоизмерительной системой СИС 4. После этого проводят испытание двигателя для измерения с помощью СИС величины тяги двигателя. При этом следует учесть, что в величину Rст, получаемую по результатам замеров, входит неизвестная величина приведенной поправки на входной импульс стендовой тяги.

Приведенная тяга двигателя Rдв.пр определяется на основании общеизвестной формулы:

где R - тяга двигателя, измеряемая СИС;

F*c - измеренная площадь выходного сечения сопла двигателя;

Р*вх - измеренное полное давление воздуха в сечении перед двигателем;

Pб - измеренное давление в боксе;

ΔRпар - поправка от аэродинамического сопротивления двигателя, коммуникаций и стендового оборудования, размещенных на динамометрической платформе СИС стенда.

После определения величины тяги двигателя с помощью лемнискатного насадка повторяют испытание двигателя для измерения величины тяги двигателя с (только механически) отсоединенным лемнискатным насадком 3. Лемнискатный насадок 3 в этом случае остается присоединенным (по воздушному потоку) к двигателю с помощью лабиринтного уплотнения 6, ограничивающего проток воздуха из лемнискатного насадка 3 в бокс и обеспечивающего радиальный зазор между лемнискатным насадком 3 и РМК 5 (обычно до 1-2 мм) (см. фиг.2). Такая схема испытаний применяется, например, при измерении высотно-скоростных характеристик двигателей в термобарокамере ЦИАМ (смотри статья в Трудах ЦИАМ №602, 1973 г., стр.27-31).

В этом случае, на результаты замеров R не влияет величина приведенной поправки на входной импульс стендовой тяги, и приведенная тяга двигателя R0.дв.пр определяется на основании следующей общеизвестной формулы:

где R - тяга двигателя, измеряемая СИС;

G*в - измеренный массовый расход воздуха, измеряемый в РМК;

Vлаб - измеренная скорость воздуха в сечении лабиринтного уплотнения;

F*лаб - измеренная площадь лабиринтного уплотнения;

Рлаб - измеренное статическое давление воздуха в сечении лабиринтного уплотнения;

F*с - измеренная площадь выходного сечения сопла двигателя;

Р*вх - измеренное полное давление воздуха в сечении перед двигателем;

Pб - измеренное давление в боксе;

ΔRпар - поправка от аэродинамического сопротивления двигателя, коммуникаций и стендового оборудования, размещенных на динамометрической платформе СИС стенда.

Поскольку испытания двигателя проводятся на одном и том же стенде с помощью лемнискатного насадка 3 и при отсоединенном лемнискатном насадке 3, разницей в приведенных значениях величин поправок от аэродинамического сопротивления двигателя можно пренебречь. С учетом этого, после поэтапно проведенных испытаний двигателя для режимов работы NПР=const (бесфорсажные режимы) или αΣПР=const (форсажные режимы) двигателя определяют величину приведенной поправки на входной импульс стендовой тяги ΔRВУ. ПР по формуле

где Rо.дв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная при отсоединенном лемнискатном насадке;

Rдв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная с помощью лемнискатного насадка.

Определенная таким образом величина приведенной поправки на входной импульс ΔRву.пр учитывается при замере приведенной тяги двигателя Рпр отдельно для форсажного и бесфорсажного режимов, а именно

где ΔRву.пр - приведенная поправка на входной импульс стендовой тяги;

Rдв.пр - величина приведенной тяги двигателя на закрытом стенде, определенная с помощью лемнискатного насадка. С учетом формул 4 и 1 получаем истинную тягу двигателя Rист = Rдв.пр К.

Таким образом, предложенный способ позволяет повысить достоверность результатов испытаний, уменьшив погрешность определения величины тяги двигателя, т.е. повысив точность измерения величины приведенной поправки к тяге на закрытом стенде, поскольку точность измерения тяги в компоновке с отсоединенной лемнискатой не превышает 0,5% (смотри статья в Трудах ЦИАМ №602, 1973 г., стр.37).

Способиспытаниягазотурбинногодвигателя,включающийопределениевеличиныприведеннойтягидвигателяназакрытомстендеспомощьюлемнискатногонасадка,отличающийсятем,чтодополнительноизмеряютвеличинуприведеннойтягиприотсоединенномлемнискатномнасадкеиопределяютвеличинуприведеннойпоправкинавходнойимпульсстендовойтягикакразностьвеличинсилтяг,определенныхприотсоединенномлемнискатномнасадкеиспомощьюлемнискатногонасадка.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 86.
22.04.2019
№219.017.3666

Катодный узел электронно-лучевой пушки, подогреватель катода и держатель подогревателя

Изобретение относится к электронно-лучевой сварке, а именно к устройствам электронно-лучевых пушек, в частности к высокотемпературным катодам косвенного накала с большой площадью эмиттирующей поверхности. Катодный узел электронно-лучевой пушки содержит катододержатель в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002314591
Дата охранного документа: 10.01.2008
22.04.2019
№219.017.3667

Устройство для получения отливок литьем по удаляемым моделям

Изобретение относится к литейному производству. Устройство содержит керамическую форму с прибыльной полостью, заливочную воронку, съемную крышку и керамическую трубку. Заливочная воронка расположена с наружной стороны съемной крышки. Крышка образует закрытую прибыльную полость. Один конец...
Тип: Изобретение
Номер охранного документа: 0002314892
Дата охранного документа: 20.01.2008
22.04.2019
№219.017.3668

Устройство для настройки комплекса бесконтактных измерений

Изобретение относится к измерительной технике и направлено на повышение точности настройки комплекса бесконтактных измерений при возможности учета перспективных искажений в процессе обработки результатов измерений. Этот технический результат обеспечивается за счет того, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002310815
Дата охранного документа: 20.11.2007
22.04.2019
№219.017.3669

Способ ремонта жаровой трубы камеры сгорания газотурбинного двигателя

Изобретение относится к области ремонта, а именно к способам ремонта жаровых труб камер сгорания газотурбинных двигателей с дефектами в виде трещин. Способ включает устранение дефекта в виде трещины путем ее механического удаления с образованием паза и заварку последнего. При этом паз получают...
Тип: Изобретение
Номер охранного документа: 0002311998
Дата охранного документа: 10.12.2007
22.04.2019
№219.017.366b

Способ изготовления технологической оснастки

Изобретение относится к литейному производству, в частности к технологии изготовления технологической оснастки высокой точности. С формообразующей поверхности формы для выплавляемых моделей изготавливают первый слепок. С формообразующей поверхности первого слепка снимают второй слепок. Второй...
Тип: Изобретение
Номер охранного документа: 0002313418
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.366c

Инструментальная головка

Изобретение касается электрохимических и электрофизических методов обработки металлов, в частности инструментальных головок для обработки цилиндрических или кольцевых деталей на электрохимических и электроэрозионных станках. Инструментальная головка содержит, по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002313428
Дата охранного документа: 27.12.2007
22.04.2019
№219.017.3670

Способ неразрушающего контроля состояния объекта

Использование: для неразрушающего контроля состояния объекта. Сущность: заключается в том, что объект просвечивают рентгеновским или гамма-излучением, регистрируют интенсивности прошедшего сквозь объект излучения с помощью детектора, который контактирует с частью объекта, обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002304766
Дата охранного документа: 20.08.2007
22.04.2019
№219.017.3671

Способ определения суммарной пропускной способности внутренних сквозных каналов в изделии

Изобретение относится к контрольно-диагностическим технологиям. Способ включает заполнение газом ресивера и продувку каналов изделия газом из ресивера через трубопровод, при этом ресивер заполняют газом до давления, обеспечивающего критический перепад между давлением в ресивере и давлением...
Тип: Изобретение
Номер охранного документа: 0002303778
Дата охранного документа: 27.07.2007
22.04.2019
№219.017.3672

Станок для электрохимического шлифования

Изобретение относится к области машиностроения и может быть использовано при электроабразивном шлифовании. Станок содержит поворотный стол, рабочий инструмент, систему снабжения электролитом и систему управления источником тока. Предусмотрены также столы, выполненные с возможностью...
Тип: Изобретение
Номер охранного документа: 0002305026
Дата охранного документа: 27.08.2007
22.04.2019
№219.017.3673

Установка для получения диффузионных покрытий в циркулирующей газовой среде

Изобретение относится к химико-термической обработке деталей и может найти применение в машиностроении, в авиационной промышленности и в других отраслях народного хозяйства. Для расширения функциональных возможностей установка для получения диффузионных покрытий в циркулирующей газовой среде...
Тип: Изобретение
Номер охранного документа: 0002305141
Дата охранного документа: 27.08.2007
+ добавить свой РИД