×
27.04.2019
219.017.3de2

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ ЛОПАТКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химико-термической обработке преимущественно жаропрочных никелевых сплавов. Может использоваться при изготовлении и ремонте лопаток стационарных энергетических установок и авиационных газотурбинных двигателей. Способ защиты поверхности лопатки в процессе горячего изостатического прессования, включающий помещение лопатки в контейнер с последующим размещением в газостате. Перед горячим изостатическим прессованием лопатку или ее часть погружают в керамический порошок на основе огнеупорных окислов с температурой плавления 1400-2800°С и дисперсностью от 0,01 до 17 мкм. Техническим результатом является предотвращение окисления лопатки в процессе ГИП. 2 з.п. ф-лы, 8 ил., 3 табл.

Изобретение относится к области химико-термической обработки (ХТО), преимущественно, жаропрочных никелевых сплавов и может быть использовано как при изготовлении, так и при ремонте охлаждаемых и неохлаждаемых лопаток стационарных энергетических установок и авиационных газотурбинных двигателей.

Процесс горячего изостатического прессования может применяться для повышения качества структуры литых изделий и заключается в воздействии на изделие высокого давления до 2000 атм нейтрального газа при высокой температуре до 1400°С. (Mucller V.V., Bchravesh M. Improvement of Nuclear Casting by Application of Hot Isostatic Pressing (HIP). Battelle Columbus Laboratory, 1979). Такая обработка значительно уменьшает литейную пористость. Однако применяемый при ГИП инертный газ аргон, содержащий по ГОСТ 10157-99 до 0,0007 вес.% кислорода, может вызвать окисление поверхности лопатки. Глубина окисленного слоя в зависимости от температурно-временного режима ГИП может достигать да 200 мкм, поэтому подвергаемые горячему изостатическому прессованию литые детали должны иметь припуск металла, который снимается после проведения ГИП механической обработкой, или на поверхность литой детали перед ГИП должно наноситься защитное покрытие толщиной в несколько микрон, которое после проведения ГИП удаляется методом травления.

В процессе эксплуатации лопаток газотурбинных двигателей в структуре материала образуются микропоры ползучести, которые в процессе ремонта лопаток могут быть устранены только с помощью горячего изостатического прессования (Белов А.Ф., Хаюров С.С., Клещев А.С., и др. Восстановление структуры и свойств лопаток после длительной эксплуатации. Авиационная промышленность, 1984 г., №2, с.54-56). Однако использование газостатической обработки при ремонте лопаток газотурбинных двигателей ограничивается отсутствием эффективной защиты замка лопаток от воздействия кислорода, содержащегося в аргоне.

Известен способ защиты поверхности лопаток турбины газотурбинных двигателей из жаропрочных никелевых сплавов при горячем изостатическом прессовании, используемый в процессе реализации способа повышения качества и эксплуатационной надежности лопаток в соответствии с патентом РФ №2184178, C 23 F 17/00, 2002.06.27. Согласно указанному способу для защиты поверхности лопаток на их наружную и внутреннюю поверхность наносят диффузионное защитное покрытие определенной толщины. Однако нанесение такого покрытия на лопатку приводит к изменению геометрических размеров и, соответственно, механических свойств поверхностного слоя, что требует последующей механической обработки. В случае, когда подвергаемая ГИПу лопатка уже была полностью механически обработана или при проведении ремонта лопаток, последующая механическая обработка невозможна, так как при этом изменятся геометрические размеры замка лопатки, что является недопустимым. Проведение ГИП без защиты замка лопатки приведет к окислению поверхностного слоя.

Известен также способ защиты поверхности лопаток в процессе горячего изостатического прессования с помощью защитных экранов или оболочек (Патент РФ №2184178, C 23 F 17/00, 2002.06.27). Данный способ характеризуется тем, что перед размещением лопатки в газостате ее помещают в контейнер. Контейнер препятствует циркуляции газа при горячем изостатическом прессовании, защищает лопатку от излучения. Однако эффективность данного способа крайне мала. Данный способ защиты поверхности лопаток выбран в качестве прототипа.

Технической задачей изобретения является осуществление эффективной защиты от окисления в процессе ГИП лопатки, в том числе предварительно механически обработанной.

Эта задача решается тем, что в предлагаемом способе защиты поверхности лопатки газотурбинного двигателя в процессе горячего изостатического прессования лопатку помещают в контейнер с последующим размещением ее в газостате, причем перед проведением горячего изостатического прессования обрабатываемую лопатку или ее часть погружают в керамический порошок на основе огнеупорных окислов с температурой плавления 1400°-2800°С и дисперсностью от 0,01 до 17 мкм.

Внутри контейнера может быть размещена емкость, содержащая вещество, поглощающее кислород, в качестве которого может быть использовано железо, или никель, или титан.

Дисперсный керамический порошок на основе керамических окислов идеально охватывает всю лопатку, имеющую поверхность геометрически сложной формы, в том числе и ее замок, который в случае ремонта лопатки не может быть впоследствии механически обработан. В качестве дисперсного керамического порошка может быть использован порошок на основе, например, окислов ZrO2, Сr2О3, CaO, MgO, Y2О3, Аl2О3, SiO2, Yb2О3, Sc2O3. Нижний предел температуры плавления для окислов задается температурой плавления защищаемых жаропрочных никелевых сплавов, которая составляет 1400°С, при этом имеющиеся в настоящий момент газостаты позволяют достичь такой температуры для проведения газостатирования перспективных материалов на никелевой основе. Верхний температурный предел, составляющий 2800°С, обусловлен максимальной температурой плавления жаропрочной керамики. Под действием высокого давления в процессе ГИП происходит спрессовывание дисперсного керамического порошка, и, таким образом, создается барьер, препятствующий взаимодействию кислорода, содержащегося в аргоне, с поверхностью лопатки. Погруженная в дисперсный керамический порошок лопатка (или несколько лопаток) должна находиться в отдельном контейнере, выполненном из жаростойкого никелевого сплава, несколько отдельных контейнеров могут быть составлены в контейнер большего размера, в который может помещаться емкость с железом, или никелем, или титаном. В дальнейшем несколько контейнеров большего размера также могут быть размещены в контейнере и т.д. Количество промежуточных контейнеров ограничивается размерами рабочей камеры газостата. Стенки контейнеров, выполненные из жаростойкого никелевого сплава, являются препятствием для конвективного перемещения аргона в процессе ГИП и, соответственно, служат дополнительным барьером для содержащегося в нем кислорода.

Некоторое количество кислорода, содержащегося в аргоне, может быть поглощено определенными веществами, так называемыми гетерами. В качестве таких веществ могут быть использованы железо, никель, титан. Например, у армко-железа при 900°С привес (параметр, характеризующий степень поглощения кислорода) увеличивается за 3 часа на 17 мг/см2, у чистого титана привес при 1200°С за 3 часа увеличивается на 30 мг/см2, у никеля при 1200°С привес увеличивается на 10 мг/см2 в течение 8 часов (“Высокотемпературное окисление металлов и сплавов”. Справочник под ред. И.Н.Францевича, 1980, Наукова Думка).

Дисперсность керамического порошка не должна быть менее 17 мкм, поскольку при меньшей дисперсности (т.е. большем размере частиц), наблюдается проникновение кислорода к защищаемой поверхности. При дисперсности выше 0,01 (меньшем размере частиц) наблюдается взаимодействие частиц порошка с материалом лопатки, что отрицательно влияет на качество поверхностного слоя: появляется шероховатость, требующая дополнительной обработки.

Сущность изобретения поясняется иллюстрациями.

На фиг.1 представлена схема размещения лопаток в газостате при проведении горячего изостатического прессования. На схеме показаны лопатка 1, погруженная в керамический порошок 2, находящийся в контейнере 3, несколько контейнеров 4 большего размера с размещенными в них контейнерами 3 меньшего размера, помещенные в рабочую камеру 5 газостата, а также помещенная внутрь контейнера емкость 6 с веществом 7, поглощающим кислород.

На фиг.2 показана структура поверхностного слоя незащищенной лопатки из сплава ЖС6У после проведения ГИП.

На фиг.3 показана структура поверхностного слоя лопатки из сплава ЖС6У, защищенной в соответствии со способом, после проведения ГИП.

На фиг.4 показана структура поверхностного слоя незащищенной лопатки из сплава ЖС32 после проведения ГИП.

На фиг.5 показана структура поверхностного слоя лопатки из сплава ЖС32, защищенной в соответствии со способом.

На фиг.6 показана микроструктура поверхности замка лопатки после ГИП при ее защите порошком Аl2O3 и дисперсностью 16 мкм.

На фиг.7 показана микроструктура поверхности замка лопатки после ГИП при ее защите порошком Аl2O3 и дисперсностью 20 мкм.

На фиг.8 показана микроструктура поверхности замка лопатки после ГИП при ее защите порошком Аl2O3 и дисперсностью 1 мкм.

В таблице 1 приведены сравнительные данные микротвердости основного металла и поверхностного слоя для защищенной и незащищенной лопатки. В таблице 2 приведены сравнительные данные по химическому составу поверхностных слоев для сплавов ЖС6У и ЖС32 для лопаток с защищенной и незащищенной поверхностью.

Способ осуществляется следующим образом.

Одну или несколько лопаток 1 располагают в контейнерах 3 с находящимся в них дисперсным керамическим порошком 2, в который погружают лопатку 1 или ее часть, которую необходимо защитить от воздействия кислорода. Несколько контейнеров 3 с находящимися в них лопатками 1 размещают в контейнер 4 большего размера, который затем располагают в рабочей камере 5 газостата. В контейнере 4 большего размера размещают емкость 6 с веществом 7, поглощающим кислород, в качестве которого используют железо, никель, титан определенной дисперсности. Затем в рабочую камеру 5 газостата подают инертный газ под давлением ~160 МПа и с температурой 1200-1300°С, в котором производится горячее изостатическое прессование лопаток.

Пример 1.

В течение 3 ч проводили ГИП при давлении 160 МПа и температуре 1210°С двух охлаждаемых лопаток из сплава ЖС6У после наработки на авиационном двигателе 1100 часов, поверхность замка одной лопатки не была защищена, а у второй применялась защита порошком Аl2O3 с дисперсностью 16 мкм. Глубина окисленного слоя у незащищенной лопатки составила 50 мкм, а у лопатки с примененной защитой окисление поверхностного слоя не происходило. При этом микротвердость поверхностного слоя у лопатки без защиты увеличилась на 550 МПа, а у лопатки с примененной защитой изменений микротвердости в поверхностном слое по сравнению с основным металлом нет (фиг.6).

Пример 2.

В течение 3 ч проводили ГИП при давлении 160 МПа и температуре 1250°С двух охлаждаемых лопаток из сплава ЖС32, одна лопатка имела защиту замка порошком Аl2O3 с дисперсностью 1 мкм, другая была не защищена. Структура поверхностного слоя показана на фиг.7 и фиг.4. Глубина окисленного слоя у лопаток без защиты замка составила 70 мкм, а с примененной защитой окисленного слоя нет. При этом микротвердость поверхностного слоя у лопатки без защиты увеличилась на 450 МПа, а у лопатки с примененной защитой изменений микротвердости в поверхностном слое по сравнению с основным металлом нет.

Пример 3.

В течение 3 ч проводили ГИП при давлении 160 МПа и температуре 1210°С двух охлаждаемых лопаток из сплава ЖС6У после наработки на авиационном двигателе 1100 часов, поверхность замка одной лопатки не была защищена, а у второй применялась защита порошком Аl2O3 с дисперсностью 20 мкм. Глубина окисленного слоя у незащищенной лопатки составила 50 мкм, а у лопатки с примененной защитой окисление поверхностного слоя составило 15 мкм. При этом микротвердость поверхностного слоя у лопатки без защиты увеличилась на 550 МПа, а у лопатки с примененной защитой изменений микротвердости в поверхностном слое по сравнению с основным металлом нет.

Как видно из примера, выход за пределы заявленной дисперсности резко снижает прочностные характеристики лопатки из-за образования на ее поверхности окисленного слоя.

Применение заявленного способа защиты поверхности лопаток предотвратило изменение химического состава металла в поверхностных слоях лопаток (см. табл. 2 и 3). Количественные характеристики элементов, содержащихся в сплавах, указаны в соответствии со справочником: Машиностроение. Энциклопедия. T.II-3, М.,

1.Способзащитыповерхностилопаткивпроцессегорячегоизостатическогопрессования,включающийпомещениелопаткивконтейнерспоследующимразмещениемвгазостате,отличающийсятем,чтопередпроведениемгорячегоизостатическогопрессованияобрабатываемуюлопаткуилиеечастьпогружаютвкерамическийпорошокнаосновеогнеупорныхокисловстемпературойплавления1400-2800°Сидисперсностью0,01-17мкм.12.Способпоп.1,отличающийсятем,чтовнутрьконтейнерапомещаютемкость,содержащуювещество,поглощающеекислород.23.Способпоп.2,отличающийсятем,чтовкачествевещества,поглощающегокислород,используютжелезо,илиникель,илититан.3
Источник поступления информации: Роспатент

Показаны записи 31-40 из 52.
09.06.2019
№219.017.77ea

Способ работы парогазовой установки

Способ относится к теплоэнергетике, в частности к парогазовым установкам, работающим на смеси пара и продуктов сгорания топлива, и позволяет уменьшить потери тепла и воды в окружающую среду. В способе работы парогазовой установки, включающем образование рабочей парогазовой смеси, расширение...
Тип: Изобретение
Номер охранного документа: 02208684
Дата охранного документа: 20.07.2003
09.06.2019
№219.017.788f

Способ получения тепловой энергии в паросиловой энергетической установке

Изобретение относится к теплоэнергетике и может быть использовано как при создании паросиловых энергетических установок, так и при модернизации уже действующих. Способ предусматривает пропускание рабочего пара через паровую турбину, от которой производят, по меньшей мере, один промежуточный...
Тип: Изобретение
Номер охранного документа: 02224118
Дата охранного документа: 20.02.2004
09.06.2019
№219.017.78bf

Способ контроля пропускной способности сквозных внутренних каналов

Изобретение относится к области машиностроения. Способ включает нагрев изделия, пропускание через его каналы рабочей среды с температурой, неравной средней температуре нагрева изделия, и измерение поля температур на поверхности изделия во время пропускания рабочей среды через его каналы....
Тип: Изобретение
Номер охранного документа: 02219531
Дата охранного документа: 20.12.2003
09.06.2019
№219.017.78ca

Токовихревой преобразователь

Изобретение относится к неразрушающему контролю и может быть использовано, например, для дефектоскопии электропроводящих объектов. Технический результат: повышение достоверности контроля путем увеличения отношения сигнал/помеха. Сущность изобретения: токовихревой преобразователь содержит...
Тип: Изобретение
Номер охранного документа: 02216729
Дата охранного документа: 20.11.2003
09.06.2019
№219.017.78d0

Энергетическая установка

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам, работающим на смеси пара и продуктов сгорания. Энергетическая установка, содержащая газотурбинный двигатель с турбиной, работающей на парогазовой смеси, первый конденсатор, имеющий два входа и два выхода, при этом...
Тип: Изобретение
Номер охранного документа: 02211342
Дата охранного документа: 27.08.2003
09.06.2019
№219.017.7a10

Газификатор твердого топлива

Изобретение относится к устройствам для газификации твердого топлива. Топливо загружают в реактор 1 с помощью устройства 2 для загрузки топлива. В качестве твердого топлива может быть использован кусковой уголь, древесина, торф. Газификатор выполнен многоступенчатым, со ступенями 5, 6 и 7,...
Тип: Изобретение
Номер охранного документа: 0002315083
Дата охранного документа: 20.01.2008
09.06.2019
№219.017.7ad7

Способ получения защитного покрытия на изделиях из низколегированных и углеродистых сталей (варианты)

Изобретение относится к вариантам способа получения защитного покрытия на изделиях из низколегированных и углеродистых сталей, длительно эксплуатируемых в высокотемпературном до 500°С потоке продуктов сгорания природного газа, представляющем собой главным образом воду и углекислый газ (CO),...
Тип: Изобретение
Номер охранного документа: 0002355480
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ad8

Композиционный материал для покрытия

Изобретение относится к композиционному материалу для покрытия поверхностей узлов и деталей аппаратов, машин, механизмов, нуждающихся в защите от коррозии, и длительно эксплуатируемых в высокотемпературном до 500°С потоке продуктов сгорания природного газа, представляющем собой главным образом...
Тип: Изобретение
Номер охранного документа: 0002355725
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7b7e

Форсажная камера газотурбинного двигателя

Изобретение относится к двигателестроению, в частности к конструкциям диффузоров форсажных камер турбореактивных двухконтурных двигателей. Форсажная камера сгорания газотурбинного двигателя содержит расположенный в ее корпусе диффузор, образованный частью поверхности затурбинного обтекателя и...
Тип: Изобретение
Номер охранного документа: 0002335651
Дата охранного документа: 10.10.2008
09.06.2019
№219.017.7bc9

Устройство для поджига и стабилизации горения твердого топлива

Изобретение относится к устройствам для поджига и стабилизации горения твердого топлива в теплоэнергетических установках, например в газификаторах или котельных агрегатах. Устройство для поджига и стабилизации горения твердого топлива содержит кожух с охлаждаемой рубашкой, соединенной с...
Тип: Изобретение
Номер охранного документа: 0002301375
Дата охранного документа: 20.06.2007
Показаны записи 21-23 из 23.
09.06.2019
№219.017.77e2

Несущий элемент ротора турбомашины

Изобретение относится к области энергомашиностроения, в частности к роторам турбомашин. Несущий элемент ротора турбомашины содержит оболочку вращения с криволинейной формой меридиана срединной поверхности и одним или несколькими кольцевыми поясами для крепления лопаточных венцов, а также осевым...
Тип: Изобретение
Номер охранного документа: 02209318
Дата охранного документа: 27.07.2003
09.06.2019
№219.017.784b

Сплав на основе хрома

Изобретение относится к металлургии и может быть использовано в промышленности для изготовления штампового инструмента, используемого при деформации труднодеформируемых материалов, в частности жаропрочных сплавов на никелевой и интерметаллидной основах в изотермических условиях. Предложен сплав...
Тип: Изобретение
Номер охранного документа: 02236480
Дата охранного документа: 20.09.2004
09.06.2019
№219.017.8072

Энергетическая установка

Изобретение относится к теплоэнергетике, в частности к энергетическим установкам. Энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, первый выход которого подключен к первому...
Тип: Изобретение
Номер охранного документа: 02190104
Дата охранного документа: 27.09.2002
+ добавить свой РИД