×
22.04.2019
219.017.3676

Результат интеллектуальной деятельности: КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002301360
Дата охранного документа
20.06.2007
Аннотация: Изобретения относятся к авиационной технике и могут быть использованы в газотурбинном двигателестроении, а именно в компрессоростроении. В компрессоре с диагональной ступенью упорный подшипник, установленный на валу ротора, размещается таким образом, чтобы ось, проходящая через центры тел качения для подшипника качения или через центр упорного гребня вала для подшипника скольжения, пересекалась с осью вала ротора на расстоянии |Н| от места пересечения оси вала ротора и продолжения образующей конической поверхности периферии рабочей лопатки. Технический результат заявленного изобретения по первому и второму варианту - повышение для компрессора с диагональной ступенью и с криволинейной образующей периферии рабочей лопатки КПД и надежности путем обеспечения оптимального размещения упорного подшипника на валу ротора, с обеспечением минимального зазора между рабочими лопатками колеса и статором компрессора. 2 н.п. ф-лы, 2 ил.

Изобретения относятся к авиационной технике и могут быть использованы в газотурбинном двигателестроении, а именно в компрессоростроении.

Известны компрессоры с диагональной ступенью (SU 1048176, от 15.10.1983 г., бюл. №38; SU 1815430, 15.05.1993 г., бюл. №18). Однако данные устройства имеют низкие коэффициент полезного действия (далее КПД) и надежность компрессора из-за выхода из строя упорного подшипника, размещенного на валу ротора.

Также известно устройство с центростремительным компрессором (SU 1763695, от 23.09.1992 г., бюл. №35) и устройство с центробежным компрессором (Г.С.Скубачевский, "Авиационные газотурбинные двигатели, конструкция и расчет двигателей". Издательство "Машиностроение", Москва, 1969 г., стр.103, рис.4.01).

Однако данные устройства также не позволяют повысить КПД и надежность компрессора, поскольку не обеспечено оптимальное размещение подшипника на валу ротора, которое в процессе работы обеспечивает минимальный рабочий зазор между рабочими лопатками колеса и статором компрессора.

Технический результат заявленного изобретения по первому варианту - повышение для компрессора с диагональной ступенью КПД и надежности путем обеспечения оптимального размещения упорного подшипника на валу ротора, с обеспечением минимального зазора между рабочими лопатками колеса и статором компрессора.

Указанный технический результат по первому варианту достигается тем, что в компрессоре с диагональной ступенью, содержащем статор, ротор, рабочее колесо с лопатками и размещенный на валу ротора подшипник, ось, проходящая через центры тел качения для подшипника качения или через центр упорного гребня вала для подшипника скольжения, пересекает ось вала ротора на расстоянии |Н| от места пересечения оси вала ротора и продолжения образующей конической поверхности периферии рабочей лопатки, где Н - расстояние, образованное пересечением с осью вала продолжения образующей конической поверхности периферии рабочей лопатки и прямой, проведенной из точки пересечения образующей конической поверхности периферии рабочей лопатки с выходной кромкой рабочего колеса, при условии, что угол между ними составляет не более 15°.

Технический результат заявленного изобретения по второму варианту - повышение для компрессора с центробежной ступенью КПД и надежности путем обеспечения оптимального размещения упорного подшипника на валу ротора, с обеспечением минимального зазора между рабочими лопатками колеса и статором компрессора.

Указанный технический результат по второму варианту достигается тем, что в компрессоре с центробежной ступенью, содержащем статор, ротор, рабочее колесо с лопатками, выполненными с криволинейной образующей, и размещенный на валу ротора подшипник, ось, проходящая через центры тел качения для подшипника качения или через центр упорного гребня вала для подшипника скольжения, пересекает ось вала ротора на расстоянии |Н| от места пересечения оси вала ротора и продолжения касательной к криволинейной образующей рабочей лопатки, проведенной из точки пересечения последней с ее выходной кромкой, где Н - расстояние, образованное пересечением с осью вала продолжения касательной к криволинейной образующей рабочей лопатки и прямой, проведенной из точки пересечения криволинейной образующей рабочей лопатки с выходной кромкой рабочего колеса, при условии, что угол между ними составляет не более 15°.

Предложенные варианты размещения упорного подшипника ротора в компрессорах газотурбинного двигателя позволяют получить наименьший, обеспечивающий работоспособность компрессора зазор между рабочими лопатками колеса и статором компрессора.

Таким образом, диагональная или центробежная ступень компрессора, установленная на ротор, имеющий упорный подшипник, размещенный в соответствии с настоящим изобретением при прочих равных условиях, имеет максимальный КПД.

Предложенные изобретения поясняются чертежами.

На фиг.1 изображено размещение упорного подшипника в компрессоре с диагональной ступенью;

на фиг.2 изображено размещение упорного подшипника в компрессоре с криволинейной образующей периферии рабочей лопатки.

В компрессоре с диагональной ступенью 1 упорный подшипник 2, установленный на валу 3 ротора, размещается таким образом, чтобы ось 4, проходящая через центры тел качения для подшипника качения, или ось 5, проходящая через центр упорного гребня вала 3 для подшипника скольжения, пересекалась с осью вала 3 ротора на расстоянии |Н| от места пересечения оси вала 3 ротора и продолжения образующей конической поверхности 6 периферии рабочей лопатки 7, причем Н - расстояние, образованное пересечением с осью вала 3 продолжения образующей конической поверхности 6 периферии рабочей лопатки 7 и прямой 8, проведенной из точки пересечения образующей конической поверхности 6 периферии рабочей лопатки 7 с выходной кромкой 9 рабочего колеса, выбирается из условия, что угол между ними составляет не более 15°.

На фиг.1 показан угол, равный 15°, и, следовательно, показано максимальное расстояние |Н|, на которое может быть смещен подшипник 2, установленный на валу 3 ротора, однако, если угол меньше 15°, то расстояние |Н| также будет меньше, причем оно может быть равно нулю, т.е. возможен частный случай реализации, когда прямая 8, проведенная из точки пересечения образующей конической поверхности 6 периферии рабочей лопатки 7 с выходной кромкой 9 рабочего колеса до пересечения с осью вала 3 совпадает с продолжением образующей конической поверхности 6 периферии рабочей лопатки 7. Выбор расстояния |Н| зависит от конструктивных особенностей компрессора: геометрии подводящих каналов, компоновки уплотнений и т.п.

Такое расположение подшипника 2, позволяющее получить наименьший, обеспечивающий работоспособность компрессора зазор между рабочими лопатками колеса и статором 10 компрессора, обусловлено тем, что при работе компрессора температурные расширения элементов конструкции компрессора происходят вдоль лучей, исходящих из точки пересечения оси упорного подшипника (ось, проходящая через центры тел качения для подшипника качения или центр упорного гребня подшипника скольжения) с осью вала ротора. Следовательно, при работе компрессора перемещения конической поверхности периферии рабочих лопаток и статора компрессора будут происходить вдоль луча, перпендикулярного зазору. Поэтому величина зазора будет меняться мало.

В компрессоре с центробежной ступенью 11 упорный подшипник 2, установленный на валу 3 ротора, размещается таким образом, чтобы ось 4, проходящая через центры тел качения для подшипника качения, или ось 5, проходящая через центр упорного гребня вала 3 для подшипника скольжения, пересекалась с осью вала 3 ротора на расстоянии |Н| от места пересечения оси вала 3 ротора и продолжения касательной 12 к криволинейной образующей рабочей лопатки 7, проведенной из точки пересечения последней с ее выходной кромкой 9, причем Н - расстояние, образованное пересечением с осью вала 3 продолжения касательной 12 к криволинейной образующей рабочей лопатки 7 и прямой 13, проведенной из точки пересечения криволинейной образующей рабочей лопатки 7 с выходной кромкой 9 рабочего колеса, выбирается из условия, что угол между ними составляет не более 15°.

Такое расположение подшипника для обеспечения минимального зазора между рабочими лопатками колеса и статором компрессора обусловлено тем, что при работе компрессора температурные расширения элементов конструкции компрессора происходят вдоль лучей, исходящих из точки пересечения оси упорного подшипника (ось, проходящая через центры тел качения для подшипника качения или центр упорного гребня подшипника скольжения) с осью ротора. Следовательно, перемещения конической поверхности периферии рабочих лопаток и статора компрессора будут происходить вдоль луча, перпендикулярного зазору. Поэтому величина зазора будет меняться мало.

Особенностью работы диагональных и центробежных ступеней компрессоров (например, для открытых рабочих колес, без покрывного диска) является зависимость характеристик ступени, и особенно экономичности от рабочего зазора между рабочими лопатками колеса и статором компрессора. Влияние температурного фактора на величину рабочего зазора в наибольшей степени проявляется со стороны выходной кромки лопатки.

Известно, что увеличение относительного зазора на 1% приводит к снижению КПД ступени на 2-3%.

В случае использования центробежной или диагональной ступени в составе газотурбинного двигателя вопрос конструктивного обеспечения минимального зазора между рабочими лопатками колеса и статором компрессора становится особенно актуальным из-за больших взаимных температурных перемещений ротора и статора, при температурных расширениях.

Пример конкретного выполнения.

Пример 1 (компрессор с диагональной ступенью).

1. При угле =0° оптимальное расположение подшипника, при котором обеспечивается КПД, например, равное 85%, которое будет максимальным.

2. При угле 15° резко повышается вероятность касания лопаток о статор компрессора, что может привести к однократному износу деталей и в результате увеличенному зазору на протяжении всей службы компрессора, т.е. к снижению надежности компрессора и КПД, которое в случае угла 15° будет равно 83%.

Пример 2 (компрессор с центробежной ступенью).

1. При угле =0° оптимальное расположение подшипника, при котором обеспечивается КПД, например, равное 84%, которое будет максимальным.

2. При угле 15° резко повышается вероятность касания лопаток о статор компрессора, что может привести к однократному износу деталей и в результате увеличенному зазору на протяжении всей службы компрессора, т.е. к снижению надежности компрессора и КПД, которое в случае угла 15° будет равно 82%.

Предложенные варианты размещения упорного подшипника ротора в компрессорах газотурбинного двигателя позволяют получит наименьший рабочий зазор между рабочими лопатками колеса и статором компрессора.

Таким образом, в диагональных или центробежных ступенях компрессора упорный подшипник, размещенный в соответствии с настоящим изобретением при прочих равных условиях, имеет максимальный КПД.

1.Компрессорсдиагональнойступенью,содержащийстатор,ротор,рабочееколесослопаткамииразмещенныйнавалуротораподшипник,отличающийсятем,чтоось,проходящаячерезцентрытелкачениядляподшипникакаченияиличерезцентрупорногогребняваладляподшипникаскольжения,пересекаетосьвалароторанарасстоянии|Н|отместапересеченияосиваларотораипродолженияобразующейконическойповерхностиперифериирабочейлопатки,гдеН-расстояние,образованноепересечениемсосьювалапродолженияобразующейконическойповерхностиперифериирабочейлопаткиипрямой,проведеннойизточкипересеченияобразующейконическойповерхностиперифериирабочейлопаткисвыходнойкромкойрабочегоколесаприусловии,чтоуголмеждунимисоставляетнеболее15°.12.Компрессорсцентробежнойступенью,содержащийстатор,ротор,рабочееколесослопатками,выполненнымискриволинейнойобразующей,иразмещенныйнавалуротораподшипник,отличающийсятем,чтоось,проходящаячерезцентрытелкачениядляподшипникакаченияиличерезцентрупорногогребняваладляподшипникаскольжения,пересекаетосьвалароторанарасстоянии|Н|отместапересеченияосиваларотораипродолжениякасательнойккриволинейнойобразующейрабочейлопатки,проведеннойизточкипересеченияпоследнейсеевыходнойкромкой,гдеН-расстояние,образованноепересечениемсосьювалапродолжениякасательнойккриволинейнойобразующейрабочейлопаткиипрямой,проведеннойизточкипересечениякриволинейнойобразующейрабочейлопаткисвыходнойкромкойрабочегоколесаприусловии,чтоуголмеждунимисоставляетнеболее15°.2
Источник поступления информации: Роспатент

Показаны записи 71-80 из 86.
09.06.2019
№219.017.7a95

Легкоплавкий сплав

Изобретение относится к металлообработке и может быть использовано при изготовлении лопаток ГТД. Легкоплавкий сплав на основе висмута для закрепления маложестких деталей при их механической обработке включает олово (40,5-41,5 мас.%), кадмий (2,5-3,5 мас.%), висмут - остальное. Сплав сохраняет...
Тип: Изобретение
Номер охранного документа: 0002354732
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7a99

Способ изготовления вкладышей опорного подшипника скольжения

Изобретение относится к области машиностроения и может быть использовано при изготовлении вкладышей опорного подшипника скольжения. Способ изготовления вкладыша опорного подшипника скольжения с антифрикционным фторопластовым слоем включает предварительный изгиб заготовки вкладыша и...
Тип: Изобретение
Номер охранного документа: 0002354863
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7a9c

Способ определения остаточных напряжений

Предложенное изобретение относится к области машиностроения и предназначено для определения остаточных напряжений при применении упрочняющих технологий поверхностным пластическим деформированием для повышения сопротивления усталости сложно нагруженных деталей. Технический результат от...
Тип: Изобретение
Номер охранного документа: 0002354952
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7ac5

Свеча зажигания

Изобретение относится к конструкции свечей зажигания, предназначенных для воспламенения топливных смесей, в том числе обедненных, в газотурбинных двигателях (ГТД) как энергетического, так и транспортного назначения. Свеча зажигания содержит два электрода, разделенные изолятором и образующие...
Тип: Изобретение
Номер охранного документа: 0002352040
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7ad6

Гидрореактивный движитель

Изобретение относится к жидкостным реактивным движителям, в которых реактивная струя создается с помощью насосов и импульсов давления, воздействующих на столб жидкости, преимущественно при воспламенении газовой или паровой смеси. Изобретение может быть использовано на маломерных судах и других...
Тип: Изобретение
Номер охранного документа: 0002355600
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7b42

Способ получения графитированного материала

Изобретение может быть использовано при изготовлении уплотнений для двигателей и установок для перекачки газа. Пековый или сланцевый смоляной кокс с выходом летучих веществ 3,0-9,0 мас.% измельчают до получения фракционного состава, в котором не менее 95 мас.% составляет фракция с размером...
Тип: Изобретение
Номер охранного документа: 0002374174
Дата охранного документа: 27.11.2009
09.06.2019
№219.017.7bcd

Роликолопастной компрессор

Изобретение относится к машиностроению, в частности, к ролико-лопастным компрессорам. Ролико-лопастной компрессор содержит полый корпус с выполненными в нем двумя подводящими каналами рабочей среды, один из которых сообщен с источником рабочей среды, и двумя отводящими каналами рабочей среды,...
Тип: Изобретение
Номер охранного документа: 0002301344
Дата охранного документа: 20.06.2007
09.06.2019
№219.017.7c18

Модуль сверхпроводящего резистивного ограничителя тока (варианты)

Изобретение относится к области электротехники, в частности к модулю сверхпроводящего резистивного ограничителя тока и его варианту, которые предназначены для защиты от перегрузок и токов короткого замыкания в сети. Модуль сверхпроводящего резистивного ограничителя тока по первому варианту...
Тип: Изобретение
Номер охранного документа: 0002366056
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7c83

Система управления соплом с регулируемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к системам автоматического управления авиационных газотурбинных двигателей (ГТД), в частности к системам управления соплом с регулируемым вектором тяги. Технический результат - повышение надежности системы путем введения средств обеспечения перевода сопла в осесимметричное...
Тип: Изобретение
Номер охранного документа: 0002326258
Дата охранного документа: 10.06.2008
09.06.2019
№219.017.7c96

Способ очистки топливного коллектора газотурбинного двигателя от коксовых отложений и нагара

Изобретение относится к очистке изделий от коксовых отложений и нагара, в частности к очистке топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, судостроении, энергетическом...
Тип: Изобретение
Номер охранного документа: 0002325606
Дата охранного документа: 27.05.2008
Показаны записи 11-12 из 12.
02.10.2019
№219.017.cdb4

Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Способ изготовления пластинчатого теплообменника, заключающийся в том, что наружные и внутренние гофрированные пластины изготавливают методом...
Тип: Изобретение
Номер охранного документа: 0002700213
Дата охранного документа: 13.09.2019
13.03.2020
№220.018.0b30

Радиальный лепестковый газодинамический подшипник

Изобретение относится к деталям машин, а именно к конструкциям радиальных газодинамических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Радиальный лепестковый газодинамический подшипник...
Тип: Изобретение
Номер охранного документа: 0002716377
Дата охранного документа: 11.03.2020
+ добавить свой РИД