×
19.04.2019
219.017.3218

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать стадий, при этом на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе; на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C; на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C; на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C; на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C; на девятой стадии - нагрев до температуры (Т+30÷Т+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C; на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде; на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 часов, где Т - температура полиморфного превращения; при этом с четвертой по восьмую стадию направление деформации на 90° изменяют от двух до четырех раз. Предлагаемый способ термомеханической обработки изделий обеспечивает использование титановых сплавов при низких температурах и при больших 20-30% напряжениях при двухосном растяжении и позволяет повысить надежность их в работе. 2 табл.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов. Оно может быть использовано в цветной металлургии и авиационной технике для создания изделий в виде полуфабрикатов, лонжеронов, шпангоутов, балок, работающих в условиях двухосного растяжения и минусовых температур (до -70°C).

Известен способ термомеханической обработки изделий из титановых сплавов, включающий:

- нагрев до температуры (1050-1200)°C (Тпп+120÷Тпп+270)°C, деформацию в процессе охлаждения до 850°C (Тпп-80)°C;

- нагрев до температуры (880-1050)°C (Тпп-50÷Тпп+120)°C, охлаждение в процессе деформации до температуры 750°C (Тпп-180)°C, где Тпп=920°C (Александров В.К., Аношкин Н.Ф., Белозеров А.П. «Полуфабрикаты из титановых сплавов. М., ОНТИ ВИЛС, 1996 г., с.371).

Известен также способ термомеханической обработки, применяемый при изготовлении изделий из титановых сплавов, включающий нагрев в β-области выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на 30-70°C ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазной области, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в β- и (α+β)-областях с одинаковой степенью 40-60%, повторный нагрев осуществляют до температуры на 20-40°C ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°C ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°C ниже температуры полиморфного превращения, после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры, окончательный нагрев осуществляют до температуры на 100-300°C ниже температуры полиморфного превращения (а.с. СССР №1740487).

Недостатком способа является низкий уровень циклической прочности титановых сплавов при высоких концентраторах напряжения.

Наиболее близким аналогом, взятым за прототип, является способ термомеханической обработки из титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в одиннадцать стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+290÷Тпп+370)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+100÷Тпп-70)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на второй стадии - нагрев до температуры (Tпп+180÷Tпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+50÷Тпп-90)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на третьей стадии - нагрев до температуры (Тпп+80÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-30÷Тпп-200)°C с изменением направления на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе деформации;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (15-60)%;

на пятой стадии - нагрев до температуры (Тпп+30÷Тпп+60)°C, деформацию со степенью (30-60)%;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-40)% в процессе охлаждения до температуры (Tпп-110÷Тпп-130)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью (30-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью (20-60)% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на девятой стадии - нагрев до температуры (Тпп+80÷Тпп+150)°C, деформацию при прокатке со степенью (40-70)%;

на десятой стадии производят нагрев до температуры (Тпп-20÷Тпп-50)°C, деформацию при прокатке со степенью (30-60)%;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-320÷Тпп-520)°C, выдержка 2-10 ч, где Тпп - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформирования на 90° от двух до четырех раз.

С третьей по девятую стадию направление деформирования на 90° изменяют от трех до семи раз (патент РФ №2369662).

Сплав, обработанный этим способом, имеет пониженные значения прочности при двухосном растяжении и механические свойства при температуре -70°C.

Технической задачей изобретения является повышение механических свойств при рабочих температурах до -70°C, а также повышение прочности при двухосном растяжении.

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в двенадцать стадий при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+200÷Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70÷Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120÷Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50÷Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20÷Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70÷Tпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Тпп-100÷Tпп-140)°C;

на пятой стадии - нагрев до температуры (Tпп+70÷Тпп+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Тпп-40÷Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Тпп-60÷Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+20÷Тпп+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Tпп-40÷Tпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Tпп-60÷Tпп-100)°C;

на девятой стадии - нагрев до температуры (Tпп+30÷Tпп+70)°C, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Тпп-70÷Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-20÷Тпп-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Тпп-100÷Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70÷Тпп-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270÷Тпп-470)°C с выдержкой 5-15 часов, где Тпп - температура полиморфного превращения;

при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.

На первой стадии проводится деформация при пониженной на 100°C температуре β-области, чем у прототипа, что обеспечивает получение β-структуры с меньшим размером β-зерна.

На второй и третьей стадиях также проводятся всесторонние деформации при более низкой температуре β-области, что обеспечивает дальнейшее измельчение β-зерна и получение в результате механического перемешивания и диффузионных процессов однородной по химическому составу, макро- и микроструктуре заготовки.

Деформации в процессе охлаждения до более низкой температуры (α+β)-области на четвертой, пятой, шестой, девятой, десятой стадиях значительно уменьшают величину α-фазы и способствуют повышению уровня механических свойств.

В процессе деформации в α+β-области более интенсивная деформация проходит в зонах с меньшей величиной зерна, а при нагреве в β-области более интенсивно в этих зонах идет процесс рекристаллизации и рост зерен. В других зонах с более крупным зерном деформация идет менее интенсивно и с меньшей скоростью идет процесс рекристаллизации. Таким образом достигается однородность структурно-фазового состояния.

Следует отметить, что на пятой стадии нагрев проводится при температуре (Тпп+70÷Тпп+90)°C, что обеспечивает проведение более полной рекристаллизации, а процесс деформации заканчивается при (Тпп-40÷Тпп-90)°C. На шестой стадии деформация заканчивается при (Тпп-60÷Тпп-100)°C, на седьмой при (Тпп-40÷Тпп-70)°C и восьмой при (Тпп-60÷Тпп-100)°C.

В отличие от прототипа, на пятой и шестой стадиях деформация заканчивается в процессе охлаждения до регламентированных температур (α+β)-области, что приводит к более интенсивному измельчению внутризеренной α-структуры и уменьшению частиц α-фазы, что в свою очередь повышает эффективность упрочнения межфазовыми границами и повышает уровень прочности.

На девятой и десятой стадиях деформация в процессе охлаждения до (Tпп-70÷Tпп-170)°C и (Tпп-100÷Тпп-200)°C обеспечивает дальнейшее измельчение внутризеренной структуры и повышение ее однородности.

Таким образом происходит выравнивание структуры при пяти частичных фазовых перекристаллизациях, в процессе которых деформация проходит при значительном охлаждении до регламентированной температуры и трех полных фазовых перекристаллизациях. При этом достигается создание однородной сверхмелкозернистой структуры.

Частичная фазовая перекристаллизация значительно повышает однородность структурно-фазового состояния и уровень механических свойств. Изделия с такой структурой имеют малую глубину окисления по границам зерен, а следовательно, требуют меньшей глубины механической обработки поверхности перед деформацией на девятой и десятой стадиях.

Проведенные десять стадий термомеханической обработки обеспечивают при последующей одиннадцатой стадии термической обработке, с регламентированным временем выдержки 15-60 мин и дальнейшим охлаждением на воздухе или в воде фиксацию большого количества метастабильных β- и α''-фаз, а также α- и β-фаз переменного химического состава.

При последней двенадцатой стадии обработки (старении) происходит распад метастабильных фаз с образованием высокой дисперсности α-фазы.

Двенадцать стадий обработки обеспечивают эффективное упрочнение изделий из титановых сплавов за счет следующих двух механизмов: твердорастворного упрочнения и дисперсионного упрочнения (упрочнение межфазными границами).

Использование предлагаемого способа, включающего три стадии деформации в β-области при пониженных температурах, регламентированные охлаждения в процессе деформации с первой по десятую стадию, термическую обработку без деформации на одиннадцатой и двенадцатой стадиях, обеспечивает получение более однородного структурно-фазового состояния при большей дисперсности фрагментов структуры, что в свою очередь обеспечивает получение высоких значений прочности при двухосном растяжении (σВД) и механических свойств при температуре -70°C: предела прочности (σВ-70), относительного удлинения δ-70, относительного сужения (ψ-70), ударной вязкости (KCU).

Примеры осуществления

Были изготовлены образцы изделий из титановых сплавов, ВТ-23М и ВТ-43, обработанные предлагаемым способом термомеханической обработки и способом-прототипом, которые были подвергнуты механическим испытаниям. Результаты испытаний приведены в табл.1, 2, примеры 1-3 по предлагаемому способу, 4 - по прототипу.

Пример 1

На первой стадии осуществляли нагрев до температуры (Тпп+200)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп+70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+120)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-50)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+20)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-70)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 15% при охлаждении до температуры (Тпп-100)°C;

на пятой стадии - нагрев до температуры (Тпп+70)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-40)°C;

на шестой стадии - нагрев до температуры (Тпп-20)°C, деформацию с изменением направления деформирования на 90° со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на седьмой стадии - нагрев до температуры (Тпп+20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-40)°C;

на восьмой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 20% в процессе охлаждения до температуры (Тпп-60)°C;

на девятой стадии - нагрев до температуры (Тпп+30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-70)°C;

на десятой стадии - нагрев до температуры (Тпп-20)°C, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-100)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-70)°C с выдержкой 15 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-270)°C с выдержкой 5 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют два раза.

Пример 2

На первой стадии осуществляют нагрев до температуры (Тпп+270)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+170)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-110)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+70)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-140)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 60% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% при охлаждении до температуры (Тпп-140)°C;

на пятой стадии - нагрев до температуры (Тпп+90)°C, деформацию с изменением направления деформирования на 90° со степенью 60% при охлаждении до температуры (Тпп-90)°C;

на шестой стадии - нагрев до температуры (Тпп-40)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-100)°C;

на седьмой стадии - нагрев до температуры (Тпп+50)°C, деформацию с изменением направления деформирования на 90° со степенью 60% в процессе охлаждения до температуры (Тпп-70)°C;

на восьмой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 60% в процессе охлаждения до температуры (Тпп-100)°C;

на девятой стадии - нагрев до температуры (Тпп+70)°C, деформацию со степенью 70% в процессе охлаждения до температуры (Тпп-170)°C;

на десятой стадии - нагрев до температуры (Тпп-40)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-200)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-170)°C с выдержкой 60 мин, охлаждение в воде;

на двенадцатой стадии проводят нагрев до температуры (Тпп-470)°C с выдержкой 15 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Пример 3

На первой стадии осуществляют нагрев до температуры (Тпп+230)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-20)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на второй стадии - нагрев до температуры (Тпп+150)°C, деформацию в четыре этапа при охлаждении до температуры (Тпп-80)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на третьей стадии - нагрев до температуры (Тпп+50)°C деформацию в четыре этапа при охлаждении до температуры (Тпп-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 45% на каждом этапе;

на четвертой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% при охлаждении до температуры (Тпп-120)°C;

на пятой стадии - нагрев до температуры (Тпп+80)°C, деформацию с изменением направления деформирования на 90° со степенью 45% при охлаждении до температуры (Тпп-70)°C;

на шестой стадии - нагрев до температуры (Тпп-30)°C, деформацию с изменением направления деформирования на 90° со степенью 30% в процессе охлаждения до температуры (Тпп-80)°C;

на седьмой стадии - нагрев до температуры (Тпп+30)°C, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-60)°C;

на восьмой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-80)°C;

на девятой стадии - нагрев до температуры (Тпп+50)°C, деформацию со степенью 50% в процессе охлаждения до температуры (Тпп-110)°C;

на десятой стадии - нагрев до температуры (Тпп-30)°C, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-150)°C;

на одиннадцатой стадии проводят нагрев до температуры (Тпп-120)°C с выдержкой 45 мин, охлаждение на воздухе;

на двенадцатой стадии проводят нагрев до температуры (Тпп-370)°C с выдержкой 10 часов, где Тпп - температура полиморфного превращения;

при этом с четвертой по восьмую стадию направление деформации на 90° изменяют четыре раза.

Предлагаемый способ термомеханической обработки изделий из титановых сплавов позволяет повысить их механические свойства на 20-30%, снизить массу конструкций, работающих в условиях двухосного растяжения, и повысить их эксплуатационную надежность в условиях холода (-70°C).

Применение предлагаемого способа термомеханической обработки позволит применять сплав при низких температурах, повысить надежность работы изделий из титановых сплавов и снизить их массу на 20-30%.

Таблица 1
ВТ23М (Тпп=920°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1600 1490 7,8 19,5 2,6
2 1630 1500 7,4 18 2,2
3 1570 1470 8,2 22 2,7
4 1260 1100 5,3 13 1,5

Таблица 2
ВТ43 (Тпп=910°C)
σВД σВ-70 δ-70 ψ-70 KCU-70
1 1670 1550 8 22 2,7
2 1710 1560 7,5 19 2,5
3 1680 1590 8,4 25 3,1
4 1290 1140 5,6 15 1,8
σВД - прочность при двухосном растяжении.
σВ-70 - предел прочности при -70°C.
δ-70 - удлинение при -70°C.
ψ-70 - относительное сужение при -70°C.
KCU-70 - ударная вязкость на образцах с при -70°C.

Способ термомеханической обработки изделий из титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры Т полиморфного превращения и деформацию в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, а термомеханическую обработку проводят в двенадцать стадий: на первой стадии осуществляют нагрев до температуры (Т+200÷Т+270)°C, деформацию в четыре этапа при охлаждении до температуры (Т+70÷Т-100)°C с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на второй стадии - нагрев до температуры (Т+120÷Т+170)°C, деформацию в четыре этапа при охлаждении до температуры (Т-50÷Т-110)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на третьей стадии - нагрев до температуры (Т+20÷Т+70)°C, деформацию в четыре этапа при охлаждении до температуры (Т-70÷Т-140)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30÷60% на каждом этапе, на четвертой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 15-60% при охлаждении до температуры (Т-100÷Т-140)°C, на пятой стадии - нагрев до температуры (Т+70÷Т+90)°C, деформацию со степенью 30-60% при охлаждении до температуры (Т-40÷Т-90)°C, на шестой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-40% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на седьмой стадии - нагрев до температуры (Т+20÷Т+50)°C, деформацию со степенью 30-60% в процессе охлаждения до температуры (Т-40÷Т-70)°C, на восьмой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию со степенью 20-60% в процессе охлаждения до температуры (Т-60÷Т-100)°C, на девятой стадии - нагрев до температуры (Т+30÷Т+70)°С, деформацию при прокатке со степенью 40-70% в процессе охлаждения до температуры (Т-70÷Т-170)°C, на десятой стадии - нагрев до температуры (Т-20÷Т-40)°C, деформацию при прокатке со степенью 30-50% в процессе охлаждения до температуры (Т-100÷Т-200)°C; на одиннадцатой стадии проводят нагрев до температуры (Т-70÷Т-170)°C с выдержкой 15-60 мин, охлаждение на воздухе или в воде, на двенадцатой стадии проводят нагрев до температуры (Т-270÷Т-470)°C с выдержкой 5-15 ч, где Т - температура полиморфного превращения; при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.
Источник поступления информации: Роспатент

Показаны записи 171-180 из 251.
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3aaa

Система управления судовым движителем

Система управления судовым движителем содержит задающее устройство, блок сравнения, два усилителя, два электромагнита золотника, золотник, устройство ввода скорости изменения управляемого параметра, устройство изменения скорости подачи рабочей жидкости, исполнительный механизм, судовой...
Тип: Изобретение
Номер охранного документа: 0002647335
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5e45

Способ изготовления деталей из волокнистого полимерного композиционного материала

Изобретение относится к технологии формования деталей, состоящих из композиционного материала на основе термоактивной матрицы, а именно к способу изготовления деталей из волокнистого полимерного композиционного материала. Способ изобретения включает операции: на одной из рабочих поверхностей...
Тип: Изобретение
Номер охранного документа: 0002656317
Дата охранного документа: 04.06.2018
21.07.2018
№218.016.7349

Комплекс средств оперативно-командной связи и передачи данных

Изобретение относится к области автоматики, управления и организации оперативно-командной связи и передачи данных в объектах и между объектами автоматизированных систем управления. Технический результат - дополнительные режимы работы комплекса по передаче данных и прослушиванию голосовой...
Тип: Изобретение
Номер охранного документа: 0002661796
Дата охранного документа: 19.07.2018
28.07.2018
№218.016.768a

Высотный дирижабль

Изобретение относится к области воздухоплавания. Высотный дирижабль имеет полужесткую конструкцию, внутреннюю и внешнюю оболочки, прослойка между которыми наполнена воздухом, внутренняя оболочка разделена на отсеки и наполнена несущим газом. Имеются два продольных боковых жестких элемента,...
Тип: Изобретение
Номер охранного документа: 0002662593
Дата охранного документа: 26.07.2018
19.08.2018
№218.016.7d43

Двухканальная акустическая форсунка

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей. Двухканальная акустическая форсунка для распиливания газообразного топлива содержит полый цилиндрический корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002664489
Дата охранного документа: 17.08.2018
Показаны записи 171-180 из 326.
25.08.2017
№217.015.a7db

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники. Сталь содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002611464
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab37

Способ нанесения покрытия для защиты деталей из сплавов на основе ниобия от высоких температур

Изобретение относится к покрытиям металлических материалов и может быть использовано для защиты деталей из сплава на основе ниобия от высокотемпературной газовой коррозии в условиях высоких температур. Осуществляют получение на поверхности деталей конденсированного слоя из сплава системы...
Тип: Изобретение
Номер охранного документа: 0002612334
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ad69

Полимерный звукопоглощающий материал и способ его изготовления

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. При изготовлении полимерного звукопоглощающего материала разрезают и размещают внутри слоя ячеистой структуры пористый звукопоглощающий наполнитель толщиной не менее 3 мм посредством его вдавливания. Затем...
Тип: Изобретение
Номер охранного документа: 0002612674
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b2a4

Волокнистый композиционный материал

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными и дискретными волокнами оксида алюминия, предназначенным для использования в качестве конструкционного материала для изготовления изделий, таких как корпуса вентилятора...
Тип: Изобретение
Номер охранного документа: 0002613830
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b32f

Лаковая композиция

Изобретение относится к лакокрасочным покрытиям, в частности к лаковым композициям с высокими электроизоляционными свойствами и низкой влагопроницаемостью, предназначенным для защиты плат печатного монтажа и элементов радиоэлектронной аппаратуры (РЭА), и может быть использовано в авиастроении,...
Тип: Изобретение
Номер охранного документа: 0002613915
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b346

Способ получения деформированных полуфабрикатов из интерметаллидных титановых сплавов

Изобретение относится к области металлургии, а именно к горячей обработке давлением сплавов на основе интерметаллида титана, и может использоваться при изготовлении деталей газотурбинных двигателей. Способ получения деформированных полуфабрикатов из гамма-сплава Ti-43Al-3Nb-2W-0,5Si включает...
Тип: Изобретение
Номер охранного документа: 0002613829
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b375

Способ изготовления расходуемых электродов из сплавов на основе интерметаллидов титана и алюминия

Изобретение относится к изготовлению расходуемого электрода для выплавки слитков титан-алюминиевых сплавов, содержащих 15-63 мас. % алюминия. Способ включает приготовление шихты путем смешивания титановой губки и алюминиевого полуфабриката, подачу порций шихты в коническую матрицу и последующее...
Тип: Изобретение
Номер охранного документа: 0002613832
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b37b

Способ получения полуфабрикатов из двухфазных титановых сплавов

Изобретение относится к металлургии, в частности к способу получения полуфабрикатов из двухфазных титановых сплавов, и может быть использовано в авиастроении и машиностроении. Способ получения полуфабрикатов из двухфазных титановых сплавов, включающий нагрев в β-области, деформацию, охлаждение...
Тип: Изобретение
Номер охранного документа: 0002613828
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b514

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к сплавам на основе тинана, и может быть использовано при изготовлении тяжелонагруженных деталей и узлов, работающих при температуре до 600°С. Сплав на основе титана содержит, мас. %: алюминий 6,0-8,0, молибден - 0,4-1,3, олово - 1,5-3,5,...
Тип: Изобретение
Номер охранного документа: 0002614355
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b555

Сплав на основе гамма-алюминида титана

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллидов титана и алюминия, и может быть использовано для изготовления методами литья или обработки давлением изделий, предназначенных для применения в конструкции авиационных газотурбинных двигателей и...
Тип: Изобретение
Номер охранного документа: 0002614354
Дата охранного документа: 24.03.2017
+ добавить свой РИД