×
19.04.2019
219.017.2b89

Результат интеллектуальной деятельности: Широкополосный детектор терагерцевого излучения (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области тонкопленочной СВЧ микроэлектроники и антенной техники, в том числе массивам антенн и метаматериалам. Широкополосный детектор терагерцевого излучения состоит из распределенного абсорбера в виде матрицы антенн в конфигурации метаматериала, микроболометров, подключенных к каждому элементу метаматериала. Каждый элемент матрицы метаматериала имеет симметричную форму для обеспечения одинаковой чувствительности к обеим поляризациям, элементы матрицы представляют собой электрические замкнутые контуры. Позади метаматериала абсорбера расположена дополнительная плоскость, отделенная от метаматериала слоем диэлектрика. Матрица антенн выполнена из сильно взаимодействующих между собой кольцевых электрически малых планарных антенн в конфигурации метаматериала, в разрыв которых включены по четыре болометра структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник, соединенных последовательно по току смещения и сигналу считывания. Технический результат заключается в расширении спектральной полосы согласования, увеличении быстродействия детектора, снижении трудоемкости и времени изготовления устройства, уменьшении количества технологических операций и в применении стандартных методов и материалов тонкопленочной микроэлектроники. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области тонкопленочной СВЧ микроэлектроники и антенной техники, в том числе массивам антенн и метаматериалам. Широкополосные детекторы терагерцевого излучения востребованы для активных и пассивных систем дистанционного контроля безопасности, медицинской диагностики, дистанционного контроля загрязнений атмосферы, обнаружения ядовитых и взрывчатых веществ, радиоастрономии, неразрушающего контроля материалов. Применение обычных матриц антенн размером порядка половины длины волны совместно с микродетекторами и болометрами не позволяет обеспечить достаточную ширину полосы и эффективность приема. Применение матрицы антенн в виде метаматериала с размером каждой антенны много меньше длины волны позволяет максимально расширить полосу приема и эффективность, приближаясь к характеристикам распределенного абсорбера.

Известно устройство-аналог [1]: матрица из 30 квадратных рамочных полуволновых антенн с четырьмя интегрированными болометрами структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник (СИНИС) в каждой антенне. На центральной частоте 345 ГГц полоса приема составила 15 ГГц. К недостаткам аналога относится узкая полоса согласования и жесткие требования к импедансу болометра по согласованию с импедансом антенны. Конструкция оказывается критически чувствительной к толщине подложки и требует вытравливания подложки до 140 мкм с точностью до 1 мкм.

Известно устройство-аналог [2]: матрица из 21 кольцевых рамочных полуволновых антенн с четырьмя интегрированными болометрами структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник (СИНИС) в каждой антенне. На центральной частоте 345 ГГц полоса приема составила 30 ГГц. К недостаткам аналога относится сравнительно узкая полоса согласования и жесткие требования к импедансу болометра по согласованию с импедансом антенны. Конструкция требует использования подложки полуволновой толщины и контррефлектора на расстоянии четверть волны от антенной структуры.

Известно устройство-аналог [3]: матрица антенных элементов в виде метаматериала из разрезанных кольцевых резонаторов размером 1/10 длины волны на частоте 11 ГГц с полосой пропускания 10% и эффективностью поглощения 88%. К недостаткам аналога относится узкополосность и невозможность интегрировать болометры и детекторы в элементы метаматериала.

Известно устройство-аналог [4]: матрица антенных элементов в виде метаматериала из гантелеобразных антенн, которая имеет эффективность поглощения 95% в диапазоне от 0.95 до 2.4 ТГц. К недостаткам аналога относится невозможность интегрировать болометры и детекторы в элементы метаматериала.

Известно устройство-прототип [5], подробно описанное в более позднем патенте [6]. Устройство представляет собой абсорбер в виде метаматериала и интегрированных микроболометров, оптимизированный для детектирования излучения диапазона 2.5 ТГц. Одиночный элемент матрицы представляет собой крестообразный замкнутый контур размером 24 мкм и шириной 2.5 мкм, подключенный к земляной шине через два КМОП детектора или болометра. Период структуры составляет 30 мкм. Металлическая шина расположена позади приемной структуры через SiO2 изолятор толщиной 2 мкм и выполняет функции емкости в контуре резонатора. Согласно формуле этого изобретения детектор в фокальной плоскости состоит из:

- распределенного абсорбера в конфигурации многослойного метаматериала,

- микроболометров, подключенных к каждому элементу метаматериала,

- дополнительных пассивных слоев метаматериалов, отделенных от основного дополнительными диэлектриками,

- каждый элемент матрицы метаматериала имеет симметричную форму для обеспечения одинаковой чувствительности к обеим поляризациям,

- элементы матрицы представляют собой электрические замкнутые контуры крестообразной формы,

- для расширения полосы согласования конструкция представляет собой стопку таких метаматериалов с отличающимися размерами,

- позади метаматериала абсорбера расположена дополнительная плоскость, отделенная от метаматериала слоем диэлектрика толщиной меньше 1/30 длины волны,

- каждый микроболометр термически связан с элементом матрицы метаматериала и измеряет температуру нагрева этого элемента.

Недостатками прототипа являются узкополосность и малое быстродействие, необходимость нанесения большого числа слоев металлов и диэлектриков для расширения полосы, необходимость использовать помимо металлов и диэлектриков, также и полупроводников для создания детекторов.

Целью предлагаемого изобретения является: расширение спектральной полосы приема, увеличение быстродействия, упрощение технологии, снижение количества слоев металлов, устранение полупроводниковых слоев, повышение воспроизводимости распределенных детекторов терагерцевого излучения на основе метаматериалов, упрощение согласования детекторов с системой считывания, применение стандартных операций фотолитографии и нанесения тонких металлических пленок без применения сложной гибридной технологии формирования полупроводниковых детекторов.

Поставленные цели достигаются тем, что в широкополосном детекторе терагерцевого излучения, состоящем из распределенного абсорбера в виде матрицы антенн в конфигурации метаматериала, микроболометров, подключенных к каждому элементу метаматериала, каждый элемент матрицы метаматериала имеет симметричную форму для обеспечения одинаковой чувствительности к обеим поляризациям, элементы матрицы представляют собой электрические замкнутые контуры, позади метаматериала абсорбера расположена дополнительная плоскость, отделенная от метаматериала слоем диэлектрика, матрица антенн, согласно изобретению, выполнена из сильно взаимодействующих между собой кольцевых электрически малых планарных антенн в конфигурации метаматериала, в разрыв которых включены по четыре болометра структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник (СИНИС), соединенных последовательно по току смещения и сигналу считывания.

Поставленные цели достигаются также тем, что в широкополосном детекторе терагерцевого излучения, состоящем из распределенного абсорбера в виде матрицы антенн в конфигурации метаматериала, микроболометров, подключенных к каждому элементу метаматериала, каждый элемент матрицы метаматериала имеет симметричную форму для обеспечения одинаковой чувствительности к обеим поляризациям, элементы матрицы представляют собой электрические замкнутые контуры, позади метаматериала абсорбера расположена дополнительная плоскость, отделенная от метаматериала слоем диэлектрика, матрица антенн, согласно изобретению, выполнена из взаимодействующих между собой кольцевых электрически малых планарных антенн в конфигурации метаматериала, в разрыв которых включены по два болометра структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник (СИНИС), соединенных параллельно по напряжению смещения и сигналу считывания.

Для расширения и выравнивания спектральной характеристики детектора возможно выполнение дополнительной плоскости, размещенной позади метаматериала, в виде радиочастотного поглотителя.

Сущность изобретения поясняется фигурами. На Фиг. 1 схематически изображен отдельный элемент последовательной матрицы метаматериала с отрезками кольцевой антенны (1), четырьмя болометрами (2) в каждой кольцевой антенне, соединенными последовательно горизонтально отрезками пленок (3), а также фотография реализации такой структуры. На Фиг. 2 схематически изображен отдельный элемент параллельной матрицы метаматериала с отрезками кольцевой антенны (1), двумя болометрами (2), соединенными параллельно отрезками пленок (3), а также фотография реализации такой структуры. Эффективность согласования по спектру для двух поляризаций приведена на Фиг. 3, где (1) вертикальная поляризация, (2) горизонтальная поляризация.

В предлагаемом устройстве матрица антенн выполнена в виде сильно взамодействующих между собой кольцевых электрически малых (много меньше длины волны) антенн, болометры включены непосредственно в разрыв кольцевых антенн, выделение мощности происходит непосредственно в микроабсорбере болометра. В качестве болометров использованы быстродействующие и высокочувствительные болометры структуры Сверхпроводник-Изолятор-Нормальный металл-Изолятор-Сверхпроводник (СИНИС), матрицы кольцевых электрически малых антенн за счет взаимодействия с соседними элементами образуют распределенный абсорбер, имеющий большую широкополосность и эффективность поглощения. Сильное взаимодействие отдельных антенн между собой эквивалентно эффекту укорачивающей емкости, что позволяет существенно сократить размеры антенн и расстояние между ними. Вся микросхема изготавливается в два этапа: на первом этапе формируется нижний слой матрицы антенн, соединительных проводов и контактных площадок, на втором этапе методом теневого напыления в разрывах антенн формируются СИНИС болометры. Элементы матрицы могут быть соединены либо последовательно для считывания по напряжению, либо параллельно для считывания по току. Позади подложки с матрицей расположен контррефлектор в виде проводящей плоскости.

Новым по сравнению с прототипом является применение кольцевых антенн с СИНИС болометрами и соединение отдельных кольцевых антенн в двух направлениях, а также отсутствие дополнительных пассивных слоев метаматериала. Использование двух или четырех СИНИС структур с кольцевыми антеннами позволяет обеспечить согласование импедансов антенны и абсорберов болометров. В реализации для центральной частоты 350 ГГц такая комбинация по расчетам должна обеспечивать высокую равномерность спектральной чувствительности в диапазоне 290-450 ГГц для обеих ортогональных поляризаций (расчте для двух поляризаций приведен на Фиг. 3). В конкретной реализации внешний диаметр одной кольцевой антенны составляет 60 мкм, период 70 мкм, размер матрицы 10×10 элементов составляет 621×621 мкм. Размеры туннельных переходов в СИНИС структурах составляют 1 мкм2, полоска абсорбера между ними 2×0.2 мкм. Толщина золотой пленки антенны и разводки составляет 200 нм, толщина алюминиевых электродов СИН переходов составляет 70 нм. Формирование болометров осуществляется методом теневого напыления через маску двуслойного электронного резиста и последующего взрыва резиста (lift-off). Возможны разные варианты технологии, в частности формирование болометров с висящими абсорберами методом химического травления.

Устройство работает следующим образом: плоская волна фокусируется с помощью линзы на матрицу антенн, в антеннах возникают токи, разогревающие болометры, установленные в разрывах антенн. Разогрев болометров регистрируется схемой считывания на основе полевых транзисторов в случае последовательной матрицы. Положительный эффект достигается за счет эффективного взаимодействия излучения с матрицей антенн, перекрывающей пятно Эйри и выступающей в роли распределенного широкополосного абсорбера. Высокая чувствительность обеспечивается применением согласованных по импедансу с антенной СИНИС болометров, которые обладают минимальной эквивалентной шумом мощностью по сравнению с полупроводниковыми детекторами и болометрами.

У авторов изобретения имеется положительный опыт изготовления описанных структур. Были изготовлены последовательные и параллельные матрицы метаматериалов размером 10×10 антенн (фото последовательной матрицы на фиг. 1 и параллельной матрицы на фиг. 2), в которых экспериментально получена высокая эффективность и широкополосность для диапазона 350 ГГц по сравнению с матрицами стандартных антенн диаметром в половину длины волны. Антенны и подводящие проводники выполнены из трехслойной структуры Ti-Au-Pd толщиной 5-2000-100 нм, что обеспечивает малые сопротивления потерь и хороший омический контакт с электродами болометров. Болометры изготовлены теневым напылением под тремя углами в виде структуры Al-AlOx-AlFe-AlOx-Al, в которой толщина алюминиевых электродов составляет 70 нм и роль абсорбера выполняет двуслойная пленка Fe/Al (2 нм/14 нм), которая является нормальным проводником за счет подавления сверхпроводимости в алюминии эффектом близости со с ферромагнитной пленкой железа.

Технический результат предлагаемого решения состоит в достижении поставленных целей: повышении широкополосности вплоть до октавы, увеличение быстродействия до сотен килогерц, упрощении технологии и сокращении числа технологических операций до двух литографий и двух напылений тонких пленок, снижении трудоемкости и времени изготовления.

Предлагаемые матрицы болометров предназначены для использования в качестве приемников для радиоастрономии в условиях сравнительно высокого уровня фонового излучения. Для этого необходимы матрицы болометров, в которых приходящая мощность распределяется между большим числом болометров, в нашем случае 200 или 400. При этом сохраняется высокая чувствительность СИНИС болометра, превышающая 109 В/Вт. Одновременно требуется достаточно широкая полоса приема, что и достигается использованием матриц болометров, эквивалентных распределенному абсорберу. Достигнутые преимущества предложенной конструкции и технологии позволяют упростить изготовление широкополосных детекторов, использовать стандартную технологию электронной или фотолитографии, стандартные термические и магнетронные методы нанесения тонких пленок, расширить область частот вниз до миллиметрового и субмиллиметрового диапазонов.

Литература

1. S. Mahashabde, A. Sobolev, G. Tsydynzhapov, et al., Planar frequency selective bolometric array at 350 GHz, IEEE Trans, on Terahertz Science and Technology, vol. 5, No 1, 2015, pp. 37-43, DOI 10.1109/TTHZ.2014.2377247.

2. S. Mahashabde, A. Sobolev, A. Bengtsson, et al., A frequency selective surface based focal plane receiver for the OLIMPO balloon-borne telescope, IEEE Trans, on Terahertz Science and Technolgy, vol. 5, No 1, 2015, pp. 145-152, DOI 10.1109/TTHZ.2014.2362010..

3. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett., 100, 207402 (2008).

4. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, S. Zhuang, Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings, Scientific Reports, 5, 8901 (2015), DOI: 10.1038/srep08901.

5. J. Grant, I. Escorcia-Carranza, C. Li, I. McCrindle, J. Gough, D. Cumming, A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer, Laser Photonics Rev. 7, No 6, 1043-1048 (2013) / DOI 10.1002/lpor.201300087.

6. US Patent 9,513,171 B2 Terahertz radiation detector, focal plane array incorporating terahertz detector, multispectral metamaterial absorber, and combined optical filter and terahertz absorber, assignee The University og Glasgow (GB), date Dec. 6, 2016.


Широкополосный детектор терагерцевого излучения (варианты)
Широкополосный детектор терагерцевого излучения (варианты)
Широкополосный детектор терагерцевого излучения (варианты)
Широкополосный детектор терагерцевого излучения (варианты)
Источник поступления информации: Роспатент

Показаны записи 31-40 из 91.
25.08.2017
№217.015.992e

Способ измерения переходной тепловой характеристики светоизлучающего диода

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с...
Тип: Изобретение
Номер охранного документа: 0002609815
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9f31

Акустокалориметрический сенсор для сигнализации изменений газового состава замкнутых помещений

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен...
Тип: Изобретение
Номер охранного документа: 0002606347
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b07a

Способ создания в исследуемых объектах локальных электрических и магнитных полей

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов. Способ создания в исследуемых объектах локальных электрических и магнитных полей содержит этапы, на которых осуществляют...
Тип: Изобретение
Номер охранного документа: 0002613332
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b08e

Способ измерения вертикального распределения скорости звука в воде

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде. Способ предполагает излучение широкополосного импульса, прием отраженных сигналов на приемопередающую антенну с узкой характеристикой направленности,...
Тип: Изобретение
Номер охранного документа: 0002613485
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b7d2

Генератор свч шумовых колебаний

Изобретение относится к радиотехнике и может быть использовано при разработке аппаратуры миллиметрового диапазона волн различного назначения. Технический результат - повышение средней частоты спектра генерации шумовых колебаний в миллиметровом диапазоне волн. Генератор СВЧ шумовых колебаний...
Тип: Изобретение
Номер охранного документа: 0002614925
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b800

Оптическая система электропитания электронных устройств

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая...
Тип: Изобретение
Номер охранного документа: 0002615017
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bf73

Функциональный элемент на магнитостатических спиновых волнах

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов. Элемент на магнитостатических спиновых волнах (МСВ) имеет две пары микрополосковых преобразователей, которые образуют два параллельных...
Тип: Изобретение
Номер охранного документа: 0002617143
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c2ad

Твердотельный источник электромагнитного излучения

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала. Рабочий слой твердотельного источника...
Тип: Изобретение
Номер охранного документа: 0002617732
Дата охранного документа: 26.04.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0d

Способ определения добротности механической колебательной системы

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных...
Тип: Изобретение
Номер охранного документа: 0002624411
Дата охранного документа: 03.07.2017
Показаны записи 11-16 из 16.
29.06.2019
№219.017.9d03

Сверхпроводниковый быстродействующий ключ

Изобретение относится к области высокочастотной техники, в частности к устройствам для коммутации сигналов сантиметрового, миллиметрового и субмиллиметрового диапазонов. Техническим результатом изобретения является: повышение рабочей частоты сигнала модулятора до единиц гигагерц, увеличение...
Тип: Изобретение
Номер охранного документа: 0002381597
Дата охранного документа: 10.02.2010
22.04.2020
№220.018.172d

Композиция для присоединения радиоизотопа к полипептидам и способ присоединения радиоизотопа к полипептидам

Группа изобретений относится к области фармации, в частности к композиции для присоединения радиоизотопа к полипептиду с ковалентно присоединенным хелатором и к способу присоединения радиоизотопа к полипептиду с ковалентно присоединенным хелатором. Композиция состоит из полипептида и...
Тип: Изобретение
Номер охранного документа: 0002719418
Дата охранного документа: 17.04.2020
12.04.2023
№223.018.466a

Способ изготовления устройств с тонкопленочными туннельными переходами

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами включает нанесение двух слоев резиста разной чувствительности, экспозицию в электронном литографе, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под углом к подложке,...
Тип: Изобретение
Номер охранного документа: 0002733330
Дата охранного документа: 01.10.2020
21.04.2023
№223.018.4f81

Джозефсоновский параметрический усилитель бегущей волны на основе би-сквидов

Изобретение относится к параметрическому усилителю бегущей волны. Технический результат - расширение свободного от паразитных составляющих динамического диапазона. Для этого параметрический усилитель бегущей волны содержит размещенные на подложке копланарный волновод и связанные с ним...
Тип: Изобретение
Номер охранного документа: 0002792981
Дата охранного документа: 28.03.2023
16.05.2023
№223.018.6066

Металл-диэлектрик-металл-диэлектрик-металл фотодетектор

Изобретение относится к детекторам излучения, полевым транзисторам, туннельным усилителям с потоком горячих электронов, МДМДМ туннельным структурам для приема излучения миллиметровых и субмиллиметровых волн. Металл-Диэлектрик-Металл-Диэлектрик-Металл детектор, содержащий металлический проводник...
Тип: Изобретение
Номер охранного документа: 0002749575
Дата охранного документа: 15.06.2021
29.05.2023
№223.018.7282

Перестраиваемый генератор шумового сигнала

Изобретение относится к области радиотехники и измерительной техники, а именно к приборам, предназначенным для измерения слабых сигналов и может быть использовано для калибровки чувствительности криогенных усилителей и детекторов гигагерцового диапазона. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002796347
Дата охранного документа: 22.05.2023
+ добавить свой РИД