×
29.05.2023
223.018.7282

Результат интеллектуальной деятельности: ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и измерительной техники, а именно к приборам, предназначенным для измерения слабых сигналов и может быть использовано для калибровки чувствительности криогенных усилителей и детекторов гигагерцового диапазона. Техническим результатом изобретения является расширение диапазона перестройки уровня выходного шума криогенного генератора начиная с шумовой температуры, равной физической температуре генератора, значительное снижение прикладываемой мощности источника и устранение перегрева криостата, возможность интеграции такого генератора на одной пластине с калибруемым устройством, совместимость по технологии изготовления с криогенными усилителями, детекторами и смесителями на основе сверхпроводниковых туннельных переходов. В перестраиваемом генераторе дробового белого шума гигагерцового диапазона туннельный сверхпроводниковый переход образован по меньшей мере одним переходом типа металл-диэлектрик-металл (МДМ) с линейной вольтамперной характеристикой, и имеет импеданс, согласованный с импедансом высокочастотного тракта. Источник электрического тока выполнен с возможностью регулирования спектральной плотности шумового тока. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники и измерительной техники, а именно к приборам, предназначенным для измерения слабых сигналов и может быть использовано для калибровки чувствительности криогенных усилителей и детекторов гигагерцового диапазона.

Для калибровки и аттестации гигагерцовых малошумящих усилителей и детекторов используют традиционные методы с использованием мощных широкополосных источников белого шума и калиброванных аттенюаторов, а также полосовых фильтров. Генераторы применяются для измерения предельной чувствительности усилителя, коэффициента шума радиоприемных устройств, исследования помехоустойчивости, снятия частотных характеристик и др. Мощные генераторы шума требуют подавления сигнала до уровня, сравнимого с шумовой температурой измеряемого устройства, т.е. ослабления с уровня шумовой температуры от 15000 К до 1-10 К. При ослаблении на 40 дБ точность оценки уровня сигнала существенно снижается, подведение сигнала к криогенному устройству требует введения дополнительного канала.

Известен генератор белого шума с перестраиваемой шумовой температурой на основе тонкой пленки, нагреваемой постоянным током (RU 2292110 С1, О.Ф. Меньших, 20.01.2007). Генератор содержит источник постоянного тока, соединенный с проводником электрического тока, выполненным в виде изолированного провода, который многократно сложен под углами 180 градусов таким образом, что все изгибы расположены на одной плоскости в тесном соприкосновении друг к другу, при этом проводник электрического тока помещен в криостат. К недостаткам аналога относится малое быстродействие, связанное с большой теплоемкостью излучающего элемента, большая потребляемая мощность и перегрев криостата.

Описан генератор шума (SU 1555800 А1, В.М. Газаров, Ю.Н. Мушкаренко, О.А. Поздеев, 07.04.1990), содержащий герметизированный сосуд Дьюара, в котором размещены отрезок волновода с короткозамыкателем и тепловой излучатель, а также отрезок волновода и герметизирующее окно из радиопрозрачной пленки. Недостатками являются невозможность плавной перестройки уровня шума, громоздкость, сложность согласования с криогенными калибруемыми устройствами.

Известен криогенный генератор шума (SU 1626319 А1, МГПИ, 07.02.1991), который содержит отрезок линии передачи, криостат, первый генераторный элемент, выполненный в виде управляемого сверхпроводникового аттенюатора на отрезке микрополосковой линии передачи, токопроводящие проводники и второй генераторный элемент, выполненный в виде согласованной нагрузки. Недостатками являются невозможность плавной перестройки уровня шума, громоздкость, сложность согласования с криогенными калибруемыми устройствами.

Наиболее близким к патентуемому является сверхпроводящий источник высокочастотного шума (RU 2757858 С1 НИТУ МИСИС 21.10.2021 - прототип). Источник широкополосного дробового шума в виде сверхпроводящего туннельного перехода и источник широкополосного термодинамического шума в виде СВЧ нагрузки смонтированы на диэлектрической подложке совместно с общей планарной линией передачи СВЧ, по электродам которой сверхпроводящий туннельный переход и СВЧ нагрузка включены в нее последовательно и согласованы на гигагерцовых частотах. Один выход общей планарной линии передачи СВЧ заземлен через полосно-пропускающий фильтр, смонтированный на диэлектрической подложке, а ее второй выход подключен через стандартный волновод к низкочастотному выходу устройства. Туннельный переход и СВЧ нагрузка подключены посредством полосно-заграждающих фильтров к измерительным цепям с возможностью независимой подачи на них постоянного тока и их поочередного прямого и обратного перевода из сверхпроводящего в нормальное состояние. Согласованная СВЧ нагрузка выполнена в виде пленки микронного размера из сверхпроводящего материала, и рабочая температура диэлектрической подложки лежит ниже температур сверхпроводящего перехода материалов туннельного перехода и СВЧ нагрузки.

Недостатками прототипа являются: невозможность плавной регулировки уровня дробового шума начиная с нулевого смещения и высокий начальный уровень шумовой температуры на уровне 37 К для ниобиевых СИС переходов, а также необходимость работы при температуре ниже критической для применяемого сверхпроводника.

Настоящее изобретение направлено на решение проблемы расширения диапазона перестройки уровня выходного шума криогенного генератора начиная с шумовой температуры, равной физической температуре генераторного элемента, значительное снижение прикладываемой мощности источника и устранение перегрева криостата, возможность интеграции такого генератора на одной пластине с калибруемым устройством, совместимость по технологии изготовления с криогенными усилителями, детекторами и смесителями на основе сверхпроводниковых туннельных переходов.

Патентуемый перестраиваемый генератор дробового белого шума гигагерцового диапазона включает размещенный на диэлектрической подложке туннельный переход, образованный туннельным барьером между пленками нормального металла, присоединенными к источнику электрического тока, и связанный с высокочастотным трактом для подключения калибруемого устройства.

Отличие состоит в следующем. Туннельный переход образован по меньшей мере одним переходом типа металл-диэлектрик-металл (МДМ) с линейной вольтамперной характеристикой, и имеет импеданс, согласованный с импедансом высокочастотного тракта. Источник электрического тока выполнен с возможностью регулирования спектральной плотности шумового тока из условия I=In2/(2eΔf), где I - значение приложенного электрического тока, In - требуемое значение шумового тока, Δf - полоса частот.

Генератор может характеризоваться тем, что туннельный сверхпроводящий переход образован двумя переходами типа МДМ, образующими структуру металл-диэлектрик-металл-диэлектрик-металл (МДМДМ).

Генератор может характеризоваться и тем, что туннельный сверхпроводящий переход образован матрицей параллельно соединенных переходов МДМ или МДМДМ.

Генератор может характеризоваться также тем, что пленки нормального металла структуры МДМДМ выполнены из алюминия, туннельный барьер толщиной 1-2 нм выполнен из Al2O3, или AlN, или HfO с удельным сопротивлением 0,5-1 кОм/мкм2, а слой металла, расположенный между туннельными барьерами выполнен из меди толщиной 20-50 нм и шириной - 100-500 нм.

Генератор может характеризоваться также и тем, что высокочастотный тракт включает копланарную линию передачи с импедансом 10-100 Ом или микрополосковую линию передачи с импедансом 1-10 Ом, при этом туннельный переход интегрирован на одной подложке с калибруемым устройством, а также тем, что источник электрического тока выполнен с возможностью формирования постоянного или переменного во времени или импульсного напряжения.

Технический результат изобретения состоит в расширении диапазона перестройки уровня выходного шума криогенного генератора начиная с шумовой температуры, равной физической температуре генератора, значительное снижение прикладываемой мощности источника и устранение перегрева криостата, возможность интеграции такого генератора на одной пластине с калибруемым устройством, совместимость по технологии изготовления с криогенными усилителями, детекторами и смесителями на основе сверхпроводниковых туннельных переходов.

При реализации изобретения используется туннельный переход типа металл-диэлектрик-металл (МДМ) с линейной вольтамперной характеристикой. Сопротивление перехода подбирается таким образом, чтобы оно было согласовано с СВЧ трактом, для коаксиального тракта это 50 Ом и достигается как применением низкоомных одиночных переходов, так и параллельным соединением необходимого количества высокоомных переходов. Для согласования с волноводным трактом применяются переходы сопротивлением 370 Ом. Площадь туннельных переходов составляет от десятых долей до десятков квадратных микрометров, площадь матрицы из 100 переходов несколько квадратных миллиметров. В качестве металлических электродов могут применяться алюминий, ниобий, гафний и др., в качестве туннельного барьера-оксиды и нитриды алюминия и гафния.

Существо изобретения поясняется на фигурах, где

Фиг. 1 - выполнение одиночного планарного туннельного МДМ перехода типа сэндвич;

Фиг. 2 - выполнение параллельной матрицы МДМ переходов;

Фиг. 3 - схема включения МДМ перехода в копланарную линию;

Фиг. 4 - график зависимости нормированной на тепловой шум спектральной плотности шумового тока от приложенного напряжения;

Фиг. 5 - график зависимости про детектированного шумового сигнала от времени при подаче ступенчатого смещения;

Фиг. 6 - изображение МДМДМ структуры и ее сечения, полученные посредством оптического профилометра.

Схематическое изображение одиночного планарного туннельного МДМ перехода типа сэндвич показано на фиг. 1. Позициями обозначены: 1 - первый металлический слой, 2 - туннельный барьер, 3 - второй металлический слой. Такая конструкция туннельного перехода типа сэндвич легко выполняется методами электронной или фотолитографии и термическим или электронным напылением. Размер туннельного перехода может варьироваться от единиц до сотен квадратных микрометров, удельное сопротивление туннельного барьера от долей до десятков кОм на квадрат площади.

Схематическое изображение параллельной матрицы МДМ переходов показано на фиг. 2. Позициями обозначены: 4 - МДМДМ структура, 5 - контактные электроды; 6 - соединительные провода. Конструкция состоит из параллельно соединенных кольцевых антенн требуемого диапазона частот, в каждую кольцевую антенну параллельно включены по два МДМ перехода, итоговое сопротивление всей конструкции составляет 50 Ом, что является необходимым условием для включения в стандартный коаксиальный тракт.

Схематическое изображение способа включения МДМ перехода в копланарную линию показано на Фиг. 3. Позициями обозначены: 4 - МДМДМ структура, 5 - копланарный волновод, 6 - металлизация, 7 - линия подключения коаксиального кабеля, 8 - подложка. Конструкция выполняется методом фотолитографии с использованием металлизированного фотошаблона. Литография может быть как позитивной (прямой) поверх нанесенной пленки с последующим химическим травлением, так и обратной (негативной) литографией, когда сначала формируется рисунок окон, напыляется тонкая пленка металла и производится удаление пленки поверх резиста с сохранением пленки в окнах. В результате получается металлизированный слой необходимой геометрии. Напыление может осуществляться как термически с использованием нагреваемой лодочки или тигля, так и методом магнетронного распыления мишени. В качестве металлов могут быть использованы медь, золото, алюминий и др. В качестве туннельного барьера наиболее технологичными являются оксид и нитрид алюминия, а также оксид гафния. Технология изготовления сходна с технологией, описанной заявителем ранее в патенте RU 2749575.

Зависимость нормированной на тепловой шум спектральной плотности шумового тока от приложенного смещения показана на Фиг. 4. При нулевом смещении спектральная плотность шумового тока SI соответствует уровню теплового шума 4kT/R, а с ростом тока приближается к асимптотическому значению 2eI согласно формуле Шоттки.

Патентуемое устройство функционирует следующим образом.

На МДМ структуру подается постоянное, или медленно меняющееся, или импульсное напряжение смещения от источника электрического тока. При отсутствии тока смещения шумовое напряжение на переходе Vn соответствует формуле Найквиста для теплового шума Vn2=4kTRΔf где: k - постоянная Больцмана, Т - температура, R - сопротивление, Δf - полоса частот.

При подаче большого тока смещения выходное напряжение описывается формулой Шоттки Vn2=2eIR2Δf, где е - заряд электрона, I - пропускаемый ток смещения.

В промежуточных случаях, согласно (Ya.M. Blanter, М. Buttiker, Shot noise in mesoscopic conductors, Physics Reports 336 (2000), 1-166), генерируемый шум описывается комбинированной формулой для спектральной плотности флуктуаций тока SI=2kT/R+(eV/R)coth(eV/2kT), которая для малых напряжений сводится к классической формуле SI=4kT/R и для больших SI=2eI. Аналогичные соотношения используются в шумовой термометрии dE=2eIcoth(eV/2kT) (см. L. Spietz, K.W. Lehnert, I. Siddigi, R.J. Schoelkopf, Primary electronic thermometry using shot noise of a tunnel junction, Science 300, 1929 (2003); DOI: 10.1126/science.1084647). Зависимость спектральной плотности шумового тока от приложенного напряжения, рассчитанная согласно этим соотношениям, приведена на Фиг. 4.

Для получения шумовой температуры 10 К в тракте 50 Ом требуется приложить мощность тока смещения 0,06 мкВт для МДМ генератора шума, тогда как для ниобиевого СИС генератора шума минимальная мощность рассеяния при смещении выше энергетической щели 3 мВ превышает 0.2 мкВт.

Для исследования характеристик МДМ структур изготовлены образцы, содержащие как одиночные МДМДМ структуры, так и параллельные матрицы, содержащие 100 таких структур (RU 2749575), а также [М. Tarasov, A. Sobolev, A. Gunbina, G. Yakopov, A. Chekushkin, R. Yusupov, S. Lemzyakov, V. Vdovin, V. Edelman, Annular antenna array metamaterial with SIMS bolometers, J. Appl. Phys. 125, 174501 (2019); doi: 10/1063/1.5054160]. Алюминиевые переходы СИНИС при температуре выше 1,5 К представляют собой МДМДМ структуры. Для последовательного соединения двух МДМ переходов спектральная плотность шумов напряжения оказывается в (2)0.5 раз меньше.

В качестве материала среднего металла (М2) в М1ДМ2ДМ1 использована медь, внешние металлические контакты (M1) выполнены из алюминия. Толщина меди составляет 20-50 нм, ширина 100-500 нм. Сопротивление туннельных контактов составляет 1 кОм/мкм2. Оптическая фотография МДМДМ элемента такой матрицы представлена на Фиг. 6 в центре, а слева и справа приведены сечения по осям X и Y, на которых видно, что в МДМДМ структуре толщина берегов составляет 70 нм, а толщина пленок крайних металлов 70 нм и толщина среднего металла 40 нм.

Обеспечивается достижение плавной перестройки шумовой температуры от физической до 50 К и возможности быстрой перестройки и модуляции с частотой до нескольких килогерц. Плавность перестройки иллюстрируется зависимостью на Фиг. 4. Быстродействие такого генератора проиллюстрировано на Фиг. 5 при подаче импульса смещения, что соответствует постоянной времени 1.8 мкс. Реально постоянная времени т определяется собственной емкостью туннельного перехода и наличием паразитных емкостей в тракте питания. При сопротивлении на квадратный микрон 1 кОм и сопротивлении тракте 50 Ом обеспечивается собственная емкость 1.5 пФ и постоянная времени τ=RC=7,5×10-11 с, что позволяет в принципе достигать частоты модуляции в единицы гигагерц.

Источник шумового сигнала содержит матрицу туннельных переходов и перестраиваемый источник тока. Источник может быть включен в микрополосковый, копланарный, коаксиальный тракт. Генерация дробового шума обеспечивается при пропускании тока необходимой величины и подачи широкополосного шумового сигнала в согласованный по импедансу высокочастотный тракт с калибруемым устройством.


ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА
ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА
ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА
ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА
ПЕРЕСТРАИВАЕМЫЙ ГЕНЕРАТОР ШУМОВОГО СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 91.
10.06.2013
№216.012.46b2

Устройство для люминесцентной диагностики новообразований

Изобретение относится к медицинской технике, а именно к аппаратуре медицинского и фотобиологического назначения, предназначено для осуществления процесса люминесцентной диагностики рака на основе использования ряда редкоземельных металлокомплексов порфиринов и направлено на повышение...
Тип: Изобретение
Номер охранного документа: 0002483678
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4af0

Способ ранней электроэнцефалографической диагностики болезни паркинсона

Изобретение относится к медицине. Регистрируют электроэнцефалограмму (ЭЭГ) в фоновом режиме, вычисляют спектрограммы посредством вейвлет преобразования с материнской функцией Морле. Определяют частотные диапазоны ведущих ритмов ЭЭГ путем нахождения значений координат минимумов по частоте...
Тип: Изобретение
Номер охранного документа: 0002484766
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5e53

Способ получения пористого слоя оксида алюминия на изолирующей подложке

Изобретение относится к области получения структур, используемых, например, для изготовления полевых транзисторов и элементов памяти, необходимых для применения в микроэлектронике, системотехнике. Предложен способ получения пористых слоев оксида алюминия на изолирующих подложках. Способ...
Тип: Изобретение
Номер охранного документа: 0002489768
Дата охранного документа: 10.08.2013
27.10.2013
№216.012.7b03

Устройство для измерения турбулентных пульсаций скорости потока жидкости

Устройство относится к электроизмерениям и может быть использовано для исследования турбулентности в потоке слабо электропроводящей жидкости, например морской или пресной воды. Устройство содержит диэлектрический корпус обтекаемой формы с установленными на нем измерительными электродами,...
Тип: Изобретение
Номер охранного документа: 0002497153
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.837f

Мультибарьерная гетероструктура для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов

Изобретение относится к приборным структурам для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот. Изобретение обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002499339
Дата охранного документа: 20.11.2013
10.01.2014
№216.012.95ae

Автоматизированная система реконструкции 3d распределения нейронов по серии изображений срезов головного мозга

Изобретение направлено на построение 3D модели при использовании минимального количества изображений гистологических срезов (слоев) с использованием средств приведения изображений к виду, удобному для распознавания специфических нейронов и последующей реконструкции их трехмерных распределений....
Тип: Изобретение
Номер охранного документа: 0002504012
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9892

Способ исследования теплофизических свойств жидкостей и устройство для его осуществления

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей. Заявлен способ исследования теплофизических свойств жидкостей, при котором в металлической кювете с...
Тип: Изобретение
Номер охранного документа: 0002504757
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98bd

Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании...
Тип: Изобретение
Номер охранного документа: 0002504800
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9e44

Способ получения металл-полимерного композитного материала для радиотехнической аппаратуры

Изобретение относится к получению металл-полимерных композиционных материалов, предназначенных для применения в радиотехнической аппаратуре в качестве радиопоглощающих и экранирующих материалов. Способ включает высокоскоростное термическое разложение металлсодержащих соединений с образованием...
Тип: Изобретение
Номер охранного документа: 0002506224
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a3ea

Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе...
Тип: Изобретение
Номер охранного документа: 0002507677
Дата охранного документа: 20.02.2014
Показаны записи 1-10 из 11.
10.08.2016
№216.015.54c6

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию,...
Тип: Изобретение
Номер охранного документа: 0002593647
Дата охранного документа: 10.08.2016
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.0c20

Способ изготовления устройств со свободно висящими микромостиками

Изобретение относится к области тонкопленочной сверхпроводниковой микроэлектроники, в частности к изготовлению высокочувствительных болометров, электронных охладителей, одноэлектронных транзисторов, содержащих свободно висящий микромостик нормального металла и сверхпроводниковые переходы типа...
Тип: Изобретение
Номер охранного документа: 0002632630
Дата охранного документа: 06.10.2017
19.04.2019
№219.017.1ce7

Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем

Использование: для изготовления воздушных мостиков. Сущность изобретения заключается в том, что способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем содержит стадии нанесения и формирования фоторезиста для формирования поддерживающего слоя, нанесения и...
Тип: Изобретение
Номер охранного документа: 0002685082
Дата охранного документа: 16.04.2019
19.04.2019
№219.017.2b89

Широкополосный детектор терагерцевого излучения (варианты)

Изобретение относится к области тонкопленочной СВЧ микроэлектроники и антенной техники, в том числе массивам антенн и метаматериалам. Широкополосный детектор терагерцевого излучения состоит из распределенного абсорбера в виде матрицы антенн в конфигурации метаматериала, микроболометров,...
Тип: Изобретение
Номер охранного документа: 0002684897
Дата охранного документа: 16.04.2019
19.04.2019
№219.017.33d3

Низкотемпературный перестраиваемый источник излучения черного тела

Изобретение относится к области измерительной техники, а именно к фоточувствительным приборам, предназначенным для обнаружения теплового излучения, и охлаждаемым приемникам ИК-излучения. Низкотемпературный перестраиваемый источник излучения черного тела содержит излучатель черного тела,...
Тип: Изобретение
Номер охранного документа: 0002469280
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f47

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на...
Тип: Изобретение
Номер охранного документа: 0002442246
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.9d03

Сверхпроводниковый быстродействующий ключ

Изобретение относится к области высокочастотной техники, в частности к устройствам для коммутации сигналов сантиметрового, миллиметрового и субмиллиметрового диапазонов. Техническим результатом изобретения является: повышение рабочей частоты сигнала модулятора до единиц гигагерц, увеличение...
Тип: Изобретение
Номер охранного документа: 0002381597
Дата охранного документа: 10.02.2010
12.04.2023
№223.018.466a

Способ изготовления устройств с тонкопленочными туннельными переходами

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами включает нанесение двух слоев резиста разной чувствительности, экспозицию в электронном литографе, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под углом к подложке,...
Тип: Изобретение
Номер охранного документа: 0002733330
Дата охранного документа: 01.10.2020
21.04.2023
№223.018.4f81

Джозефсоновский параметрический усилитель бегущей волны на основе би-сквидов

Изобретение относится к параметрическому усилителю бегущей волны. Технический результат - расширение свободного от паразитных составляющих динамического диапазона. Для этого параметрический усилитель бегущей волны содержит размещенные на подложке копланарный волновод и связанные с ним...
Тип: Изобретение
Номер охранного документа: 0002792981
Дата охранного документа: 28.03.2023
+ добавить свой РИД