×
19.04.2019
219.017.1cbd

Ракета с воздушно-реактивным двигателем

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области ракетной техники, а именно к ракетам с воздушно-реактивным двигателем - ВРД. Технический результат - увеличение скорости и дальности полета ракеты, расширение тягово-аэродинамических характеристик ВРД. Устройство содержит лобовое воздухозаборное устройство. Оно включает центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива, стабилизатор. Согласно изобретению ВРД снабжен системой регулирования положения конуса. Она расположена в центральном теле и выполнена в виде гидроцилиндра с поршнем. Подпоршневая полость гидроцилиндра связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора. Надпоршневая полость гидроцилиндра связана с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки. Пилоны закреплены на центральном теле под углом атаки к продольной оси ракеты и повернуты в сторону ее вращения. Кольцевое сопло расположено на обечайке и выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете. 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к области ракетной техники, а именно к ракетам с воздушно-реактивным двигателем (ВРД).

Ракета с ВРД содержит лобовое воздухозаборное устройство, включающее центральное тело и обечайку, камеру сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ) и стабилизатор с раскрывающимися лопастями.

Воздушно-реактивный двигатель, установленный в носовой части ракеты предназначен для поддержания или увеличения скорости ракеты с целью повышения дальности ее полета после окончания работы разгонного твердотопливного двигателя (РДТТ).

Одним из направлений повышения эффективности образцов ракетного вооружения является разработка ракет с увеличенной дальностью полета. Увеличение дальности полета ракет можно добиться путем применения комбинированных двигательных установок, а именно сочетание разгонного твердотопливного (РДТТ) и маршевого воздушно-реактивного двигателя (ВРД).

Совершенствование данных ракет развивается в направлении поиска рациональных конструктивных и технологических решений при разработки ВРД, обеспечивающих повышение надежности функционирования при различных скоростях полета, термостойкости изделия при длительной работе, стабильности внутрибаллистических характеристик в камере сгорания, а также реализации предельных или близких к ним тягово-экономических характеристик.

Предмет изобретения представляет собой ракету с многорежимным воздушно-реактивным двигателем с расширенными тягово-экономическими характеристиками за счет использования регулируемого воздухозаборника, веерного сопла, улучшенными внутрибаллистическими характеристиками в камере сгорания ВРД и повышенной надежностью функционирования газодинамического тракта двигателя при длительной работе.

Известна конструкция активно-реактивного снаряда с ВРД, расположенным в носовой части, обладающим профилированным центральным телом (Сорокин В. А., Яновский Л.С.И др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Наука, М., 2010 г., с. 31), содержащего лобовое воздухозаборное устройство, включающее центральное тело и обечайку, камеру сгорания, пилоны, кольцевое сопло, газогенератор.

Стабилизация снаряда с ВРД в полете происходит за счет вращения вокруг продольной оси со скоростью ~ 170 об/с. Пилоны, которые жестко связывают центральное тело с обечайкой, параллельны продольной оси двигателя. При вращении ракеты из-за значительного скоса потока воздуха в газодинамическом тракте двигателя и из-за срыва потока смеси газов и пламени вращающимися пилонами существенно возрастает сопротивление двигательного тракта, растут потери полного давления, увеличивается разброс внутрибаллистических характеристик в камере сгорания ВРД. В итоге нарушаются аэробаллистические характеристики ракеты в целом, уменьшаются дальность и точность полета.

Наличие воздухозаборного устройства (ВЗУ) с фиксированным положением конуса смешанного сжатия на центральном теле предполагает наличие горла воздухозаборного устройства большой площади для успешного запуска ВЗУ при старте снаряда или ракеты. Это приводит к слабому сжатию набегающего воздуха в воздухозаборном устройстве и к существенному ограничению количества тепла, подводимому к камере сгорания, что приводит в целом к ухудшению тяговых характеристик двигателя.

Другим недостатком рассматриваемой системы является отсутствие эффективного кольцевого сопла, которое уменьшило бы поперечные нагрузки на снаряд из-за наличия короткой внешней стенки кольцевого сопла, возможной неоднородности течения в сопле и улучшило бы тяговые характеристики двигателя.

Приведенный артиллерийский снаряд характеризуется небольшой дальностью стрельбы, а следовательно, небольшой скоростью и продолжительностью полета.

Наиболее близким по технической сути является конструкция ракеты с ВРД, расположенным в носовой части ракеты (патент RU №2585211, МПК F42B 12/46, 2015 г.), принятая автором за прототип.

Общими признаками с предлагаемой ракетой с ВРД, является наличие в прототипе лобового воздухозаборного устройства, включающего центральное тело и обечайку с поднутрением, камеру сгорания, пилоны, сопла, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ), стабилизаторы.

ВРД содержит лобовое воздухозаборное устройство (ВЗУ), включающее центральное тело и обечайку, пилоны, жестко связывающие центральное тело с обечайкой, камеру сгорания, инжекторы, кольцевое сопло, газогенератор.

Конус внешне-внутреннего (смешанного) сжатия ВЗУ находится в фиксированном положении по отношению к центральному телу и к обечайке, обеспечивая жесткую связь между ними. При этом отношение минимальной площади проходного сечения (горла) воздухозаборного устройства к площади миделевого сечения ракеты составляет 0,3…0,5. При этих соотношениях происходит запуск ВЗУ при выходе ракеты из направляющей, обеспечивается его пропускная способность на участке разгона ракеты с помощью РДТТ и включение в работу ВРД при достижении оптимальной для работы скорости. Это приводит к слабому сжатию набегающего воздуха в воздухозаборном устройстве и к существенному ограничению количества тепла, подводимому в камере сгорания из-за роста давления и угрозы срыва втекания воздуха в воздухозаборное устройство, что приводит в целом к ухудшению тяговых характеристик двигателя.

Известно так же, что на аэробаллистические характеристики ракеты оказывают влияние процессы, происходящие в двигательном тракте ВРД (разброс внутрибаллистических характеристик двигательного тракта - неудовлетворительное смешение горючего и окислителя, переменная полнота сгорания по объему двигательного тракта, конструктивные особенности камеры сгорания и ВЗУ).

Стабильность аэробаллистических характеристик ракеты обеспечивается при старте закруткой ракеты в трубчатой направляющей с помощью П-образных спиральных пазов (как правило, величина угла проворота составляет 240° при длине направляющей ~ 7 метров), а в полете стабилизаторами, установленными в хвостовой части ракеты под небольшим углом атаки к продольной оси и задающими вращательное движение ракеты. Если считать, что стабилизаторы поддерживают начальную угловую скорость вращения ракеты при выходе из направляющей, то угловая скорость на заключительной стадии разгона с помощью РДТТ может составлять ~ (40-90) об/с.

Хотя угловая скорость вращения ракеты с размещенным ВРД в носовой части меньше, чем у снаряда, линейная скорость вращения пилонов камеры сгорания весьма существенна. Поэтому, из-за закрученного потока воздуха, входящего в камеру сгорания, пилоны должны быть повернуты на определенный угол в сторону вращения ракеты с ВРД, чтобы создавать меньшее сопротивление потоку воздуха в камере сгорания. Однозначно определить угол наклона пилонов по отношению к продольной оси ракеты не представляется возможным, поскольку скорости ракеты от старта до прекращения работы маршевого ВРД значительно отличаются. Также имеется зависимость скорости вращения ракеты от скорости полета. Но учитывать эту особенность необходимо для улучшения внутрибаллистических характеристик камеры сгорания и аэробаллистических характеристик изделия в целом. Скорее всего величина угла установки пилонов к продольной оси ракеты будет определяться из максимальной скорости полета ракеты в конце работы разгонного РДТТ и может составлять 3-6 градусов при скорости М=3.

В рассматриваемом прототипе пилоны расположены параллельно продольной оси ВРД и ракеты, что не лучшим образом сказывается на характеристиках изделия.

Качественная работа сопла предполагает равномерное поле давлений в критическом сечении. В случае использования кольцевого сопла получение равномерного поля давлений становится малореальным из-за сложности процессов в камере сгорания, конструкции камеры, не смотря на дозвуковой режим течения перед критическим сечением сопла. Поэтому взаимодействие неоднородной струи на выходе из критического сечения с конусом ракеты создает реакцию практически направленную нормально к продольной оси ракеты и когда длина внешней части сопла, принадлежащего обечайке, значительно короче внутренней части, принадлежащей центральному телу, либо ракете.

Дальнейшее развитие воздушно-реактивных двигателей для ракет с носовым расположением ВРД приводит к необходимости поиска технических решений, направленных на улучшение тягово-экономических характеристик двигателей, внутрибаллистических и эксплуатационных характеристик в условиях воздействия высоких температур торможения.

Задачей предлагаемого технического решения является увеличение скорости и дальности полета ракеты, расширение тягово-экономических характеристик ВРД, улучшение тягово-аэродинамических изделия в целом.

Поставленная задача решается благодаря тому, что ракета с воздушно-реактивным двигателем (ВРД) содержит лобовое воздухозаборное устройство, включающее центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ), стабилизатор. Согласно изобретению ВРД снабжен системой регулирования положения конуса, расположенной в центральном теле и выполненной в виде гидроцилиндра с поршнем, подпоршневая полость которого связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора, а надпоршневая с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки, пилоны закреплены на центральном теле под углом не равном нулю (угол атаки) к продольной оси ракеты, и повернуты в сторону ее вращения, а кольцевое сопло, расположенное на обечайке выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете.

Положительный результат достигается благодаря комплексу мероприятий по улучшению характеристик прямоточного воздушно-реактивного двигателя.

В отличие от прототипа в предлагаемой ракете с ВРД воздухозаборник выполнен регулируемым, путем перемещения конуса внешне-внутреннего сжатия вдоль оси центрального тела двигателя и обечайки. В предстартовом положении конус участка внешне-внутреннего сжатия двигателя находится в крайнем правом положении, увеличивая площадь горла воздухозаборника до максимального значения, обеспечивая штатный запуск воздухозаборника при работе РДТТ.

Пилоны, обеспечивающие жесткую связь между центральным телом и обечайкой повернуты по отношению продольной оси двигателя на угол (в сторону вращения ракеты), обеспечивающий безотрывное обтекание их потоком при вращении ракеты, тем самым уменьшая сопротивление газодинамического тракта двигателя и потерю полного давления в камере сгорания двигателя.

Отличительным признаком предлагаемого ВРД от прототипа так же является наличие на выходе из камеры сгорания веерного сопла, которое в предстартовом состоянии ракеты сложено. При пуске ракеты (выходе из трубной направляющей) под воздействием скоростного напора воздуха, проходящего через двигатель, веерное сопло раскрывается и готово к работе в комплексе с камерой сгорания.

На фиг. 1 показан общий вид ракеты с ВРД; на фиг. 2 и 3 - система, обеспечивающая перемещение конуса относительно центрального тела и обечайки; на фиг. 4 - угол наклона пилонов относительно продольной оси ракеты сечение по Е-Е на фиг. 3; на фиг. 5 схема ВРД (в изометрии).

Ракета с воздушно-реактивным двигателем содержит лобовое воздухозаборное устройство 1, включающее конус 2 внешне-внутреннего сжатия и обечайку 3 с поднутрением, пилоны 4, равномерно расположенные в окружном направлении, установлены (см. фиг. 4) под углом α≠0 к продольной оси ракеты и повернуты в сторону ее вращения, инжекторы 5, равномерно расположенные в окружном направлении, камеру сгорания 6, газогенератор 7 с программным режимом горения, центральное тело 8, веерное кольцевое сопло 9, боевую часть 10, ракетный двигатель на твердом топливе 11, стабилизаторы 12.

ВРД снабжен системой регулирования положения конуса 2 относительно обечайки 3. Система регулирования положения конуса (фиг. 2) содержит дифференциальный дроссель 13, гидроцилиндр 14, поршень 15. Полость А и подпоршневая полость Б (фиг. 3) гидроцилиндра 14 обеспечивают открытие инжекторов 5 подачи топлива в камеру сгорания 6 при запуске газогенератора 7. Полость В и надпоршневая полость Г гидроцилиндра 14 связаны с дифференциальным дросселем 13, обеспечивающим заданный режим перемещения конуса 2 вдоль продольной оси ракеты на заданную величину относительно центрального тела 8 и обечайки 3.

При хранении ракеты и в предстартовом положении поршень 15 и конус 2 находятся в крайнем правом положении (см. фиг. 2). При этом жидкость полностью заполняет надпоршневую полость Г гидроцилиндра 14, а поршень 15 полностью перекрывает входные отверстия инжекторов 5 подачи топлива в камеру сгорания 6. Веерная часть кольцевого сопла 9 сложена (положение Д), закреплена на корпусе ракеты и не выступает за габариты корпуса ракеты.

Ракета с ВРД работает следующим образом (на фиг. 2 и 3).

При запуске ракеты включают стартовый двигатель твердого топлива 11, (фиг. 1), при этом поршень 15 и конус 2 находятся в крайнем правом положении, инжекторы 5 подачи топлива в камеру сгорания 6 ВРД закрыты (см. фиг. 2), а горло воздухозаборника между обечайкой 3 и конусом 2 максимально открыто. После выхода ракеты из трубчатой направляющей (на фиг. не показано) и увеличения скорости, начинает функционировать воздухозаборное устройство 1 (ВЗУ). Под воздействием скоростного напора, раскрывается веерная часть кольцевого сопла 9. Для непрерывного разгона ракеты непосредственно перед завершением работы РДТТ подается команда на запуск газогенератора 7. Давление в полости А быстро увеличивается и вытесняет поршень 15 влево, образуя подпоршневую полость Б и открывая при этом инжекторы 5 впрыска топлива в камеру сгорания 6. Одновременно рост давления в подпоршневой полости Б резко растет и поршень 15 вытесняет жидкость из полости Г через дифференциальный дроссель 13 (см. фиг. 2 и 3) в полость В. При этом конус 2 центрального тела 8 смещается влево, в положение, оптимальное для работы ВЗУ на скорости, которую обеспечил стартовый РДТТ ракеты. Одновременно с этим происходит впрыск продуктов сгорания газогенератора 7 через открытые инжекторы 5 в камеру сгорания 6 ВРД.

Далее дифференциальный дроссель 13 обеспечивает перемещение конуса 2 вперед со штатной скоростью (на фиг. 3) вдоль продольной оси по мере разгона ракеты. При перемещении конуса 2 влево относительная площадь горла ВЗУ (отношение площади горла к площади захвата струи) непрерывно уменьшается, обеспечивая работу ВЗУ на расчетных или близких к ним режимах, зависящих от чисел Маха набегающего потока.

В соответствии с программой полета должен быть организован и расход продуктов сгорания газогенератора 7 с программным режимом горения.

Применение веерной части кольцевого сопла 9 удлиняет его внешнюю часть, принадлежащую обечайке и способствует получению равномерного поля давлений по всему тракту камеры сгорания 6.

Положительный результат обеспечивается предложенными конструктивными решениями ракеты с ВРД, которые улучшают тактико-технические характеристики заявленного объекта.

Источники информации

1. Сорокин В.А., Яновский Л.С. И др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Наука, М., 2010 г., с. 31

2. Патент RU №2585211, МПК F42B 12/46, 2015 г. – прототип.

Ракета с воздушно-реактивным двигателем, содержащая лобовое воздухозаборное устройство, включающее центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством продольных пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло, находящееся на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива, стабилизатор, отличающаяся тем, что воздушно-реактивный двигатель снабжен системой регулирования положения конуса, расположенной в центральном теле, выполненной в виде гидроцилиндра с поршнем, подпоршневая полость которого связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора, а надпоршневая - с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки, пилоны закреплены на центральном теле под углом установки, не равным нулю, к продольной оси ракеты и повернуты в сторону ее вращения, а кольцевое сверхзвуковое сопло выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете.
Ракета с воздушно-реактивным двигателем
Ракета с воздушно-реактивным двигателем
Источник поступления информации: Роспатент

Показаны записи 1-10 из 39.
10.02.2013
№216.012.2509

Узел кольцевого ввода порошкового материала электродугового плазмотрона

Изобретение относится к области плазменной техники, а именно обработки порошковых материалов (напыление и наплавка покрытий; сфероидизация, испарение и плазмохимическая обработка частиц порошковых материалов) и может найти применение в металлургии, плазмохимии и машиностроительной...
Тип: Изобретение
Номер охранного документа: 0002474983
Дата охранного документа: 10.02.2013
10.08.2013
№216.012.5d5a

Способ напыления покрытия на изделие из натурального камня или из металлического материала и устройство для его осуществления

Изобретение относится к способам и устройствам напыления покрытий на поверхности изделий холодным газодинамическим напылением, в том числе на поверхности художественных изделий и объемных форм из натурального камня или из металлического материала. Осуществляют формирование сверхзвукового...
Тип: Изобретение
Номер охранного документа: 0002489519
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.692b

Многофункциональная магнитогидродинамическая (мгд) машина

Изобретение относится к области электротехники и энергомашиностроения, а именно к энергопреобразующим устройствам роторного типа. Технический результат, достигаемый при использовании настоящего изобретения, задачей которого является создание многофункциональной магнитогидродинамической (МГД)...
Тип: Изобретение
Номер охранного документа: 0002492570
Дата охранного документа: 10.09.2013
10.11.2013
№216.012.7e01

Способ пиролиза углеводородного сырья

Изобретение относится к термическому пиролизу углеводородного сырья и может быть использовано в нефтехимической промышленности. Изобретение касается способа пиролиза углеводородного сырья, включающего генерацию высокотемпературного потока теплоносителя путем сжигания в камере сгорания...
Тип: Изобретение
Номер охранного документа: 0002497930
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7fb5

Устройство для визуализации фазовых неоднородностей

Изобретение относится к оптике для визуализации фазовых (прозрачных) объектов и может быть использовано при исследовании газовых потоков, контроля качества оптических элементов. Устройство содержит одномодовый лазер, объектив, самонаводящийся фильтр Цернике, установленный в задней фокальной...
Тип: Изобретение
Номер охранного документа: 0002498366
Дата охранного документа: 10.11.2013
27.01.2014
№216.012.9bec

Устройство газодинамического нанесения покрытий на внешние цилиндрические поверхности изделий

Изобретение относится к устройству газодинамического нанесения покрытий на внешние цилиндрические поверхности изделий и может быть использовано в машиностроении и других областях хозяйства. Устройство содержит питатель-дозатор, систему подачи рабочего газа и порошка в форкамеру (1), узел...
Тип: Изобретение
Номер охранного документа: 0002505622
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.a038

Электродуговой плазмотрон с водяной стабилизацией дуги

Изобретение относится к электродуговым плазмотронам с водяной стабилизацией дуги и может быть эффективно использовано при резке всевозможных металлов. Технический результат - упрощение конструкции, увеличение мощности плазмотрона, энтальпии получаемой плазмы, скорости резки. Электродуговой...
Тип: Изобретение
Номер охранного документа: 0002506724
Дата охранного документа: 10.02.2014
27.06.2014
№216.012.d61d

Способ снижения уровня звукового удара летательного аппарата (ла)

Изобретение относится к области авиационной техники, в частности к способам снижения уровня звукового удара от сверхзвукового летательного аппарата (ЛА). Способ снижения звукового удара включает воздействие на набегающий газовый поток перед ЛА источником энергоподвода, например лазерным...
Тип: Изобретение
Номер охранного документа: 0002520591
Дата охранного документа: 27.06.2014
27.12.2014
№216.013.13d4

Устройство адиабатического сжатия (варианты)

Изобретение относится к устройствам для реализации метода адиабатического сжатия газов и предназначено для проведения исследований условий и кинетики химических реакций в газовой фазе в широком диапазоне параметров. Устройство по одному из вариантов содержит цилиндрический реакторный модуль 1 с...
Тип: Изобретение
Номер охранного документа: 0002536500
Дата охранного документа: 27.12.2014
10.04.2015
№216.013.3e82

Способ синтеза наноразмерных частиц порошка диоксида титана

Изобретение может быть использовано в химической промышленности. Способ синтеза наноразмерных частиц порошка диоксида титана включает газофазную реакцию галогенида титана и кислорода в канале плазменного реактора и последующее охлаждение продуктов реакции в закалочном узле. Пары тетрахлорида...
Тип: Изобретение
Номер охранного документа: 0002547490
Дата охранного документа: 10.04.2015
Показаны записи 1-7 из 7.
27.10.2015
№216.013.8aa6

Способ создания рабочего газа в импульсной аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований. Согласно...
Тип: Изобретение
Номер охранного документа: 0002567097
Дата охранного документа: 27.10.2015
20.03.2016
№216.014.c64f

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в лабораторных условиях. Аэродинамическая труба содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления,...
Тип: Изобретение
Номер охранного документа: 0002578052
Дата охранного документа: 20.03.2016
27.04.2016
№216.015.3868

Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия и способ измерения расхода газа с использованием этого устройства

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с...
Тип: Изобретение
Номер охранного документа: 0002582805
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.51a6

Щелевой инжектор-генератор вихрей и способ его работы

Изобретение относится к энергетике. Щелевой инжектор-генератор вихрей, установленный в канале вдоль направления движения высокоэнергетического газового потока. При этом плоский щелевой канал инжектора выполнен с косым срезом на выходе и установлен таким образом, что срез щели образует острый...
Тип: Изобретение
Номер охранного документа: 0002596077
Дата охранного документа: 27.08.2016
29.12.2017
№217.015.fdd4

Импульсная аэродинамическая труба с электродуговым или комбинированным подогревом рабочего газа

Импульсная аэродинамическая труба с электродуговым или комбинированным подогревом рабочего газа относится к области экспериментальной аэродинамики. Аэродинамическая труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и двуступенчатый поршень,...
Тип: Изобретение
Номер охранного документа: 0002638087
Дата охранного документа: 11.12.2017
10.07.2019
№219.017.b07d

Аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Устройство содержит установленные симметрично с образованием общей форкамеры два дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002436058
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.b084

Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень,...
Тип: Изобретение
Номер охранного документа: 0002439523
Дата охранного документа: 10.01.2012
+ добавить свой РИД