×
10.04.2019
219.017.08de

Результат интеллектуальной деятельности: СПОСОБ КОНВЕРСИИ СОЛИ ЦВЕТНОГО МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для получения солей металлов из хлоридных, сульфатных и нитратных растворов, образующихся при переработке полиметаллического сырья. Способ конверсии соли цветного металла включает противоточную экстракцию цветного металла из раствора его конвертируемой соли с использованием в качестве катионообменного экстрагента в солевой форме раствора фосфорорганической кислоты в инертном разбавителе и реэкстракцию цветного металла конвертирующей кислотой с получением реэкстракта, содержащего конвертированную соль цветного металла. В качестве цветного металла используют кобальт или никель, экстракцию ведут из раствора конвертируемой соли кобальта или никеля при концентрации кобальта или никеля в растворе 65-80 г/л и рН 4-7 с использованием в качестве катионообменного экстрагента 20-50% раствора фосфорорганической кислоты в натриевой, калиевой или аммонийной форме. Реэкстракцию проводят 0,5-2,0 М раствором конвертирующей кислоты. Техническим результатом является повышение степени конверсии при минимальном содержании примесей и обеспечение расширения ассортимента получаемых солей цветных металлов. Ряд цветных металлов, к которым применим заявляемый способ, может также включать медь и цинк. 4 з.п. ф-лы.

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для получения солей металлов из хлоридных, сульфатных и нитратных растворов, образующихся при переработке полиметаллического сырья.

В настоящее время соли цветных металлов получают путем конверсии соответствующих солей металлов, оксидов или гидроксидов, используя, в основном, их растворение в кислотах с последующей очисткой получаемых солей от примесей. Данная технология отличается многостадийностью, сложностью очистки от примесей и невозможностью организации непрерывного процесса. Возможна конверсия солей кобальта из одной формы в другую методом осаждения. Однако осадительные методы при производстве солей характеризуются невысокой степенью чистоты получаемых солей, наличием перечистных операций и образованием промежуточных продуктов, возвращаемых в оборот на переработку, что существенно усложняет технологию. Значительными преимуществами по сравнению с вышеуказанными методами обладает экстракционная технология.

Известен способ конверсии соли цветного металла, в частности кобальта (см. Карякин Ю.В., Ангелов Н.И. Чистые вещества. М.: Химия, 1973, с.213), в соответствии с которым к нагретому до 40-50°С конвертируемому раствору хлорида кобальта добавляют тонкой струей при непрерывном перемешивании горячий раствор карбоната натрия. Осадок, содержащий конвертированный карбонат кобальта, отмывают большим количеством воды и высушивают при 50-60°С. Способ позволяет получать карбонат кобальта с примесью основной углекислой соли. Степень конверсии хлорида кобальта в карбонат составляет 90%.

Основным недостатком данного способа является относительно невысокая степень конверсии хлорида кобальта и наличие примесей в целевом продукте даже после многократных промывок. К недостаткам способа следует также отнести ограниченный ассортимент получаемых солей кобальта.

Известен способ конверсии соли цветного металла, в частности никеля (см. Карякин Ю.В., Ангелов Н.И. Чистые вещества. М: Химия, 1973, с.292), в соответствии с которым в раствор аммиака плотностью 0,91 г/см3 вводят конвертируемый сульфат никеля, смесь выдерживают в течение ночи, затем добавляют в нее хлорид аммония с получением малорастворимого аммиаката хлористого никеля, который после фильтрации и промывки прокаливают при температуре 450°С с получением конвертированного хлорида никеля. Степень конверсии сульфата никеля в хлорид не превышает 63%.

Недостатком данного способа является необходимость получения промежуточного продукта и проведение высокотемпературной прокалки, что усложняет способ, ведет к потерям целевого компонента и, соответственно, снижению степени конверсии. Кроме того, недостатком способа является ограниченный ассортимент получаемых солей никеля.

Известен также принятый в качестве прототипа способ конверсии соли цветного металла, в частности кобальта (см. Касиков А.Г., Дьякова Л.В., Омельчук Р.В. Получение солей кобальта методом экстракционной конверсии // Сб. материалов международ. симпозиума по сорбции и экстракции "ISSE-2008", 29 сент.-4 окт. 2008 г., Владивосток. - Владивосток, 2008. - С.189-191), включающий противоточную экстракцию кобальта из откорректированного по значению рН хлоридного раствора конвертируемой соли кобальта состава, г/л: Со - 112; Ni - 0,01; Fe, Mn, Cu<0,005 катионообменным экстрагентом. Корректировку рН производят введением 5% водного раствора аммиака или гидроксида натрия. В качестве катионообменного экстрагента используют каприловую, ди-2-этилгексилфосфорную или алкилфосфиновую кислоты в инертном разбавителе "Эскайд". Реэкстракцию ведут растворами 2,0-2,8 М азотной, серной или уксусной кислот. В случае экстракции каприловой кислотой берут ее 50% раствор в солевой форме. Экстракционное извлечение ведут на 4 ступенях при O:В=1:1 с переводом в экстракт около 70% кобальта. Реэкстракцию кобальта из органической фазы осуществляют конвертирующей 2 М уксусной кислотой на 2 ступенях с получением реэкстракта, содержащего ацетат кобальта. Реэкстракцию кобальта из органической фазы можно также осуществить азотной кислотой. В конвертированной соли ацетата кобальта массовое содержание никеля не превышает 0,008%. Степень конверсии хлорида кобальта в ацетат составляет 70%.

Известный способ характеризуется недостаточно высокой степенью конверсии хлорида кобальта в ацетат и ограниченным ассортиментом получаемых солей кобальта. К недостаткам способа следует также отнести получение ацетата кобальта, содержащего примесь уксусной кислоты, что снижает качество конвертированной соли.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении степени конверсии солей кобальта и обеспечении высокой степени конверсии солей никеля при минимальном содержании в них примесей. Технический результат заключается также в расширении ассортимента получаемых солей.

Технический результат достигается тем, что в способе конверсии соли цветного металла, включающем противоточную экстракцию цветного металла из раствора его конвертируемой соли с использованием в качестве катионообменного экстрагента в солевой форме раствора фосфорорганической кислоты в инертном разбавителе и реэкстракцию цветного металла конвертирующей кислотой с получением реэкстракта, содержащего конвертированную соль цветного металла, согласно изобретению, в качестве цветного металла используют кобальт или никель, экстракцию ведут из раствора конвертируемой соли кобальта или никеля при концентрации металла в растворе 65-80 г/л и рН 4-7 с использованием в качестве катионообменного экстрагента 20-50% раствора фосфорорганической кислоты в натриевой, калиевой или аммонийной форме, а реэкстракцию осуществляют 0,5-2,0 М раствором конвертирующей кислоты.

Достижению технического результата способствует то, что в качестве конвертируемой соли кобальта или никеля используют хлорид, сульфат или нитрат.

Достижению технического результата способствует также то, что качестве фосфорорганической кислоты используют ди-2-этилгексилфосфорную или алкилфосфиновую кислоты, а экстракцию ведут при O:В=1-2,5:1 на 2-4 ступенях и температуре 20-50°С.

Достижению технического результата способствует и то, что в качестве конвертирующей кислоты используют серную, уксусную, соляную, азотную кислоты, а реэкстракцию кобальта или никеля ведут при O:В=2-5:1 на 3-6 ступенях.

Достижению технического результата способствует также и то, что в качестве раствора конвертируемой соли кобальта или никеля используют анолит, образовавшийся при электроосаждении кобальта или никеля.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Использование в качестве цветного металла кобальта или никеля обусловлено возрастающим спросом на соли этих металлов и необходимостью повышения их чистоты. Ряд цветных металлов, к которым применим заявляемый способ, может также включать медь и цинк.

Проведение экстракции из раствора конвертируемой соли кобальта или никеля при концентрации металла в растворе 65-80 г/л обеспечивает высокую степень извлечения кобальта или никеля в органическую фазу, что позволяет повысить степень конверсии. При концентрации металла в растворе менее 65 г/л снижается степень конверсии, а при более 80 г/л снижается устойчивость раствора и возможна кристаллизация конвертируемой соли кобальта или никеля, что затрудняет проведение экстракции и снижает степень конверсии.

Проведение экстракции при рН 4-7 раствора конвертируемой соли кобальта или никеля обусловлено катионообменным механизмом экстракционного извлечения, так как коэффициенты распределения в значительной степени зависят от кислотности равновесной водной фазы: чем выше рН, тем больше коэффициент распределения и соответственно степень извлечения металла. Поскольку каждый цветной металл экстрагируется фосфорорганическими кислотами в определенной области рН, то при извлечении кобальта предпочтительны значения рН, приближенные к нижней границе заявленного интервала, а при извлечении никеля - к его верхней границе. Регулирование рН раствора осуществляется водным раствором аммиака или гидроксида натрия.

Использование в качестве катионообменного экстрагента 20-50% раствора фосфорорганической кислоты в солевой форме позволяет, с одной стороны, повысить степень извлечения кобальта или никеля, а с другой - исключить операцию корректировки рН равновесной водной фазы на каждой ступени экстракции, что необходимо производить при использовании фосфорорганической кислоты в (Н+) форме, поскольку в этом случае происходит обмен катиона металла на водород и идет подкисление водной фазы. В качестве солевой формы фосфорорганической кислоты предпочтительно использовать натриевую, калиевую или аммонийную формы с учетом их доступности и необходимых физико-химических показателей применительно к экстракционной конверсии.

Использование 20-50% раствора фосфорорганической кислоты обусловлено емкостью используемого экстрагента и концентрацией раствора конвертируемой соли кобальта или никеля. Концентрация кислоты менее 20% ведет к снижению степени извлечения кобальта или никеля. При концентрации кислоты более 50% существенно ухудшается гидродинамика экстракционного процесса, что выражается в увеличении продолжительности разделения фаз при экстракции, а также затрудняется рекстракция кобальта или никеля, что требует использование концентрированных кислот для его извлечения из органической фазы.

Осуществление реэкстракции 0,5-2,0 М раствором конвертирующей кислоты обусловлено полнотой извлечения целевого продукта из органической фазы в реэкстракт. При использовании раствора конвертирующей кислоты с концентрацией менее 0,5 М снижается извлечения целевого продукта в реэкстракт и соответственно степень конверсии, а концентрация кислоты более 2 М ведет к получению солей, загрязненных избытком кислоты.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении степени конверсии солей кобальта и обеспечении высокой степени конверсии солей никеля при минимальном содержании в них примесей, а также в расширении ассортимента получаемых солей.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Использование в качестве конвертируемой соли кобальта или никеля хлорида, сульфата или нитрата обусловлено тем, что при переработке полиметаллического сырья преимущественно образуются растворы этих солей, из которых могут быть получены различные соли кобальта и никеля. Это способствует расширению ассортимента получаемых солей.

В качестве фосфорорганической кислоты предпочтительно использовать ди-2-этилгексилфосфорную или алкилфосфиновую кислоты, которые обеспечивают полное и селективное извлечение кобальта или никеля из раствора его конвертируемой соли. Кроме того, эти кислоты обладают низкой растворимостью в воде и незначительной степенью гидролиза. Ряд фосфорорганических кислот, к которым применим заявляемый способ, может также включать фосфоновую кислоту.

Проведение экстракции при O:В=1-2,5:1 на 2-4 ступенях обеспечивает высокое извлечение кобальта или никеля из раствора его конвертируемой соли при минимально возможном расходе реагентов на стадии экстракции. Осуществление экстракции при O:В менее 1:1 обеспечивает недостаточно высокое извлечение металла из раствора его конвертируемой соли, а отношение O:В более 2,5:1 ведет к неоправданному увеличению расхода экстрагента. Одноступенчатое проведение экстракции не обеспечивает достаточно высокого извлечения кобальта или никеля из раствора его конвертируемой соли. Число ступеней более 4 нецелесообразно из-за необходимости использования дополнительных единиц оборудования без существенного повышения извлечения кобальта или никеля.

Проведение экстракции при температуре 20-50°С способствует увеличению извлечения кобальта или никеля из его водного раствора и улучшает гидродинамику экстракционного процесса, что выражается в снижении продолжительности разделения фаз при экстракции. При температуре ниже 20°С снижается извлечение металла и увеличивается продолжительность разделения фаз при экстракции, а температура выше 50°С приводит к потерям экстрагента в связи с его испарением, а также дополнительным энергозатратам на его нагрев и увеличивает пожароопасность процесса.

Использование в качестве конвертирующей кислоты серной, уксусной, соляной, азотной кислот обусловлено расширением ассортимента получаемых солей.

Проведение реэкстракции кобальта или никеля при O:В=2-5:1 на 3-6 ступенях способствует его глубокому извлечению из органической фазы в реэкстракт и соответственно повышению степени конверсии. Проведение реэкстракции при O:В менее 2:1 приводит к получению разбавленного по соли реэкстракта, что усложняет его дальнейшую переработку, а O:В более 5:1 не обеспечивает высокого извлечения кобальта или никеля из органической фазы в реэкстракт. При числе ступеней реэкстракции менее 3 не достигается высокая степень извлечения металла в реэкстракт, а число ступеней более 6 нежелательно в силу незначительного прироста извлечения целевого продукта при увеличении числа единиц оборудования.

Использование анолита, образовавшегося при электроосаждении кобальта или никеля, в качестве раствора конвертируемой соли кобальта или никеля позволит расширить диапазон конвертируемых исходных растворов. Используемые анолиты могут содержать хлориды или сульфаты кобальта и никеля или смесь этих солей.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения высоких технологических показателей процесса.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. 1 л раствора конвертируемого хлорида кобальта с рН 4, содержащего 65 г/л Со и менее 0,1 г/л суммы примесей Ni, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 20% раствором ди-2-этилгексилфосфорной кислоты в калиевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=1:1 на 4 ступенях при температуре 20°С с переводом в экстракт 95,6% кобальта. Экстракт в количестве 1 л направляют на реэкстракцию, которую осуществляют противотоком 1,5 М раствором конвертирующей уксусной кислоты при соотношении O:В=2:1 на 6 ступенях с получением 0,5 л реэкстракта, содержащего ацетат кобальта при суммарном количестве примесей, не превышающем 0,008% от содержания кобальта. Степень конверсии хлорида кобальта в ацетат 95,2%. Реэкстракт может быть использован для получения сухой соли ацетата кобальта известными методами. После реэкстракции экстрагент регенерируют с переводом в калиевую форму и направляют на первую ступень экстракции.

Пример 2. 1 л раствора конвертируемого сульфата кобальта с рН 4,5, содержащего 70 г/л Со и менее 0,1 г/л суммы примесей Ni, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 40% раствором алкилфосфиновой кислоты (Цианекс-272) в натриевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=1,5:1 на 2 ступенях при температуре 50°С с переводом в экстракт 97,3% кобальта. Экстракт в количестве 1,5 л направляют на реэкстракцию, которую осуществляют противотоком 2 М раствором конвертирующей азотной кислоты при соотношении O:В=2:1 на 3 ступенях с получением 0,75 л реэкстракта, содержащего нитрат кобальта при суммарном количестве примесей, не превышающем 0,008% от содержания кобальта. Степень конверсии сульфата кобальта в нитрат 97,1%. Реэкстракт может быть использован для получения сухой соли нитрата кобальта известными методами. После реэкстракции экстрагент регенерируют с переводом в натриевую форму и направляют на первую ступень экстракции.

Пример 3. 1 л раствора конвертируемого нитрата кобальта с рН 4, содержащего 80 г/л Со и менее 0,1 г/л суммы примесей Ni, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 50% раствором ди-2-этилгексилфосфорной кислоты в аммонийной форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=2:1 на 2 ступенях при температуре 30°С с переводом в экстракт 98,2% кобальта. Экстракт в количестве 2 л направляют на реэкстракцию, которую осуществляют противотоком 1,5 М раствором конвертирующей соляной кислоты при соотношении O:В=2:1 на 3 ступенях с получением 1 л реэкстракта, содержащего хлорид кобальта при суммарном количестве примесей, не превышающем 0,007% от содержания кобальта. Степень конверсии нитрата кобальта в хлорид 98%. Реэкстракт может быть использован для получения сухой соли хлорида кобальта известными методами. После реэкстракции экстрагент регенерируют с переводом в аммонийную форму и направляют на первую ступень экстракции.

Пример 4. 1 л раствора конвертируемого хлорида никеля с рН 7, содержащего 80 г/л Ni и менее 0,1 г/л суммы примесей Со, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 30% раствором алкил-фосфиновой кислоты (Цианекс-272) в калиевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=2:1 на 2 ступенях при температуре 40°С с переводом в экстракт 92,4% никеля. Экстракт в количестве 2 л направляют на реэкстракцию, которую осуществляют противотоком 1 М раствором конвертирующей азотной кислоты при соотношении O:В=5:1 на 6 ступенях с получением 0,4 л реэкстракта, содержащего нитрат никеля при суммарном количестве примесей, не превышающем 0,005% от содержания никеля. Степень конверсии хлорида никеля в нитрат 92%. Реэкстракт может быть использован для получения сухой соли нитрата никеля известными методами. После реэкстракции экстрагент регенерируют с переводом в калиевую форму и направляют на первую ступень экстракции.

Пример 5. 1 л раствора конвертируемого сульфата никеля с рН 6,5, содержащего 80 г/л Ni и менее 0,1 г/л суммы примесей Со, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 40% раствором ди-2-этилгексилфосфорной кислоты в натриевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=1,5:1 на 3 ступенях при температуре 35°С с переводом в экстракт 96,2% никеля. Экстракт в количестве 1,5 л направляют на реэкстракцию, которую осуществляют противотоком 1 М раствором конвертирующей соляной кислоты при соотношении O:В=2:1 на 5 ступенях с получением 0,75 л реэкстракта, содержащего хлорид никеля при суммарном количестве примесей, не превышающем 0,007% от содержания никеля. Степень конверсии сульфата никеля в хлорид 95,8%. Реэкстракт может быть использован для получения сухой соли хлорида никеля известными методами. После реэкстракции экстрагент регенерируют с переводом в натриевую форму и направляют на первую ступень экстракции.

Пример 6. 1 л раствора конвертируемого нитрата никеля с рН 6,5, содержащего 80 г/л Ni и менее 0,1 г/л суммы примесей Со, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 30% раствором алкил-фосфиновой кислоты (Цианекс-272) в аммонийной форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=2,5:1 на 3 ступенях при температуре 35°С с переводом в экстракт 94,1% никеля. Экстракт в количестве 2,5 л направляют на реэкстракцию, которую осуществляют противотоком 0,5 М раствором конвертирующей серной кислоты при соотношении O:В=2:1 на 5 ступенях с получением 1,25 л реэкстракта, содержащего сульфат никеля при суммарном количестве примесей, не превышающем 0,008% от содержания никеля. Степень конверсии нитрата никеля в сульфат 93,7%. Реэкстракт может быть использован для получения сухой соли сульфата никеля известными методами. После реэкстракции экстрагент регенерируют с переводом в аммонийную форму и направляют на первую ступень экстракции.

Пример 7. 1 л раствора конвертируемого хлорида кобальта, в качестве которого берут анолит, образовавшийся при электроэкстракции кобальта, с рН 4, содержащий 80 г/л Со и менее 0,2 г/л суммы примесей Ni, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 30% раствором ди-2-этилгексилфосфорной кислоты в калиевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:В=2:1 на 3 ступенях при температуре 30°С с переводом в экстракт 95,2% кобальта. Экстракт в количестве 2 л направляют на реэкстракцию, которую осуществляют противотоком 1,5 М раствором конвертирующей серной кислоты при соотношении O:В=2:1 на 5 ступенях с получением 1 л реэкстракта, содержащего сульфат кобальта при суммарном количестве примесей, не превышающем 0,008% от содержания кобальта. Степень конверсии хлорида кобальта в сульфат 95%. Реэкстракт может быть использован для получения сухой соли сульфата кобальта известными методами. После реэкстракции экстрагент регенерируют с переводом в калиевую форму и направляют на первую ступень экстракции.

Пример 8. 1 л раствора конвертируемой сульфатно-хлоридной соли никеля, в качестве которого берут анолит, образовавшийся при электролизе никеля, с рН 6, содержащий 80 г/л Ni и менее 0,2 г/л суммы примесей Со, Fe, Mn, Cu, направляют на экстракцию, где в режиме противотока раствор контактируют с катионообменным фосфорорганическим экстрагентом - 30% раствором алкилфосфиновой кислоты (Цианекс-272) в натриевой форме в инертном разбавителе "Эскайд". Экстракцию ведут при соотношении органической и водной фаз O:B=2,5:1 на 4 ступенях при температуре 30°С с переводом в экстракт 93,2% никеля. Экстракт в количестве 2,5 л направляют на реэкстракцию, которую осуществляют противотоком 1 М раствором конвертирующей серной кислоты при соотношении O:В=3:1 на 6 ступенях с получением 0,83 л реэкстракта, содержащего сульфат никеля при суммарном количестве примесей, не превышающем 0,008% от содержания никеля. Степень конверсии сульфатно-хлоридной соли никеля в сульфат 93%. Реэкстракт может быть использован для получения сухой соли сульфата никеля известными методами. После реэкстракции экстрагент регенерируют с переводом в натриевую форму и направляют на первую ступень экстракции.

Как видно из данных, приведенных в примерах, использование предлагаемого способа позволяет обеспечить степени конверсии солей кобальта 95-98%, никеля 92,0-95,8% при обеспечении содержания в них примесей не более 0,008%. По сравнению с прототипом степень конверсии солей кобальта повышается на 25-28%. Предлагаемый способ относительно прост, может быть реализован с использованием стандартного оборудования и обеспечивает расширение ассортимента получаемых солей цветных металлов. Ряд цветных металлов, к которым применим заявляемый способ, может также включать медь и цинк.

Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
15.03.2019
№219.016.e12f

Огнеупорное керамическое изделие

Изобретение относится к области огнеупоров и технической керамики и может быть использовано в производстве огнеупорных керамических изделий, в том числе технологических контейнеров, используемых при синтезе высокочистых материалов на основе пентаоксидов ниобия и тантала, а также для футеровки...
Тип: Изобретение
Номер охранного документа: 0002433105
Дата охранного документа: 10.11.2011
29.04.2019
№219.017.44ee

Способ получения сорбента на основе фосфата титана

Изобретение относится к области производства неорганических сорбентов для извлечения катионов различных металлов из нейтральных и слабокислых водных растворов. В титансодержащий раствор вводят водорастворимое соединение циркония при мольном отношении Ti:Zr=1:0,1-0,25 с образованием...
Тип: Изобретение
Номер охранного документа: 0002401160
Дата охранного документа: 10.10.2010
29.04.2019
№219.017.4563

Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана

Изобретение может быть использовано для фотокаталитической очистки воды и воздуха от органических соединений и патогенной флоры, при фотокаталитическом разложении воды. Для получения фотокаталитического нанокомпозита, содержащего диоксид титана, в раствор соли титана(IV) с концентрацией 1,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002435733
Дата охранного документа: 10.12.2011
09.05.2019
№219.017.4fd9

Способ извлечения ниобия и тантала из титансодержащего редкометального концентрата

Изобретение относится к гидрометаллургии редкометального сырья, в частности к сольвометаллургической переработке лопаритового концентрата, и может быть использовано в химической промышленности для извлечения из него соединений ниобия и тантала. Способ извлечения ниобия и тантала из...
Тип: Изобретение
Номер охранного документа: 0002434958
Дата охранного документа: 27.11.2011
18.05.2019
№219.017.5b00

Способ получения титансодержащего продукта

Изобретение может быть использовано в производстве титансодержащих пигментов и сорбентов. В сернокислый раствор титана с концентрацией 50-100 г/л TiO и кислотным фактором 1,25-2,5 вводят 5-20% раствор аммиака до обеспечения кислотного фактора 0,2-0,5 с образованием дисперсии гидроксида титана....
Тип: Изобретение
Номер охранного документа: 0002445270
Дата охранного документа: 20.03.2012
24.05.2019
№219.017.6030

Магнезиальное вяжущее

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и наружной облицовки зданий, напольных покрытий, лестничных ступеней, полов, стяжек под напольные покрытия, а также строительных сухих смесей....
Тип: Изобретение
Номер охранного документа: 0002428390
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.af10

Способ извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для способа извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов. Способ включает обработку отходов серной кислотой при повышенной температуре и подаче пероксида водорода с переводом в...
Тип: Изобретение
Номер охранного документа: 0002412267
Дата охранного документа: 20.02.2011
10.07.2019
№219.017.b002

Способ получения твердого ионного электролита rbagi

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное...
Тип: Изобретение
Номер охранного документа: 0002407090
Дата охранного документа: 20.12.2010
Показаны записи 1-10 из 24.
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.67ef

Способ извлечения ванадия из кислых растворов

Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей...
Тип: Изобретение
Номер охранного документа: 0002492254
Дата охранного документа: 10.09.2013
27.11.2014
№216.013.0b63

Способ получения металлического кобальта

Изобретение относится к металлургии. В токе сухого инертного газа производят высокотемпературную обработку хлорида кобальта при температуре 600-700°C с очисткой от примесей. Затем производят водородное восстановление очищенного хлорида кобальта при температуре 600-720°C с образованием...
Тип: Изобретение
Номер охранного документа: 0002534323
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f0a

Способ очистки хлоридного никелевого раствора от марганца

Изобретение относится к очистке от марганца хлоридных никелевых растворов, используемых в процессе электролиза никеля. В хлоридном никелевом растворе повышают содержание хлор-иона до 8,2-9,0 М путем введения хлорида никеля с концентрацией 190-210 г/л никеля или соляной кислоты с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002535267
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.29e4

Способ извлечения золота из солянокислого раствора

Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для экстракционного извлечения золота(III) из солянокислых растворов от выщелачивания золотосодержащих промпродуктов и концентратов. Экстракцию ведут из солянокислого раствора с концентрацией 1-5 моль/л HCl....
Тип: Изобретение
Номер охранного документа: 0002542181
Дата охранного документа: 20.02.2015
20.11.2015
№216.013.913c

Способ вскрытия шлака

Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке вскрытием шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу. Способ включает выщелачивание шлака при повышенной температуре путем равномерной загрузки...
Тип: Изобретение
Номер охранного документа: 0002568796
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
13.01.2017
№217.015.7b1e

Способ извлечения свинца из никельсодержащего хлоридного раствора

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для извлечения свинца из многокомпонентных водных растворов солей цветных металлов и железа при гидрометаллургической переработке никелевого сырья. Хлоридный раствор с концентрацией 5,5-8,0 моль/л хлора и...
Тип: Изобретение
Номер охранного документа: 0002600041
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.b34e

Способ получения концентрата драгоценных металлов из медно-никелевого файнштейна

Изобретение относится к способу переработки файнштейна с выделением металлизированной фракции. Способ включает окислительное гидрохлоридное выщелачивание путем постепенной подачи металлизированной фракции в хлоридный раствор при ОВП 400-450 мВ с переводом в раствор основной части цветных...
Тип: Изобретение
Номер охранного документа: 0002613823
Дата охранного документа: 21.03.2017
+ добавить свой РИД