×
10.04.2019
219.017.0852

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ПОЛОС НИЗКОЛЕГИРОВАННОЙ СТАЛИ КЛАССА ПРОЧНОСТИ 260

Вид РИД

Изобретение

Аннотация: Изобретение относится к прокатному производству, в частности к производству холоднокатаных полос, предназначенных для изготовления кузовных деталей автомобилей штамповкой. Для получения полосы толщиной 0,6-3,0 мм с комплексом механических свойств класса прочности 260, а также повышения выхода годной продукции за счет исключения образования микротрещин и порывов осуществляют выплавку стали, содержащей, мас.%: углерод - 0,06÷0,10, марганец - 0,20÷0,50, кремний - 0,01÷0,30, медь - 0,01÷0,3 0, алюминий - 0,02÷0,07, фосфор - 0,07÷0,12, азот - 0,003÷0,009, сера - 0,005÷0,025, кальций - 0,0005÷0,001, бор - 0008÷0,005, хром - 0,01÷0,30, никель - 0,01÷0,30, ниобий + молибден + ванадий + титан ≤0,032, железо - остальное, разливку стали с получением кристаллизованного сляба, горячую прокатку сляба в клетях широкополосного стана с получением горячекатаной полосы толщиной по зависимости: где h - толщина горячекатаной полосы, мм, h - конечная толщина холоднокатаной полосы, мм, охлаждение водой поверхности полосы, ее смотку в рулон, удаление окалины с поверхности полосы травлением, холодную прокатку на непрерывном стане, термообработку и последующую дрессировку, при этом температуру конца прокатки и смотки полосы в рулон выбирают в зависимости от толщины горячекатаной полосы соответственно: для полос толщиной более 4,01 мм - 800-820°С, 535-565°С, толщиной от 3,01 до 4,00 мм - 820-840°С, 565-595°С, толщиной от 2,00 до 3,00 мм - 840-860°С, 595-625°С. 2 табл.

Изобретение относится к прокатному производству и может быть использовано при изготовлении холоднокатаных полос из стали класса прочности 260, обладающих повышенными вытяжными характеристиками и предназначенных для последующего изготовления кузовных деталей автомобилей штамповкой.

Известны способы производства низкоуглеродистых холоднокатаных полос из горячекатаного рулонного подката, включающие удаление окалины травлением, последующие холодную прокатку на непрерывном стане, отжиг и дрессировку отожженной полосы (Патент РФ №2307173, Патент РФ №2312906, Патент РФ №2212469).

Недостатками известных способов являются сложность обеспечения в тонкой холоднокатаной полосе требуемого комплекса механических свойств, соответствующих классу прочности 260, а также невозможность безобрывной переработки горячекатаного полосового подката в качественную холоднокатаную металлопродукцию. Это связано с тем, что известные способы производства полос из низкоуглеродистой стали не учитывают температурных режимов конца горячей прокатки и смотки горячекатаной полосы в рулон, что затрудняет формирование заданной микроструктуры, а следовательно, и механических свойств по всей длине полосы на стадии горячей прокатки. В результате становится затруднительным дальнейшая переработка такого подката в холоднокатаную, а затем в холодноштампованную продукцию. Кроме того, не обеспечивается выкатываемость горячекатаного подката на заданную толщину на стадии холодной прокатки.

Известен также способ производства прокатной продукции из низколегированной стали, содержащей следующие компоненты, мас.%:

Углерод - 0,02-0,08

Марганец - 0,2-0,6

Кремний - 0,005-0,1

Медь - 0,01-0,1

Алюминий - 0,02-0,07

Бор - 0,001-0,05

Кальций - 0,0005-0,01

Азот - 0,001-0,006

Ванадий - 0,0005-0,003

Ниобий - 0,0005-0,003

Железо - остальное, с суммарным содержанием в стали ванадия и ниобия - 0,0055%. (Патент РФ №2154123).

Недостаток известного способа заключается в ограничении содержания карбонитридообразующих элементов, что не позволяет организовать дополнительное упрочнение проката на стадии горячей прокатки за счет сдерживания роста зерна в процессе рекристаллизации, а соответственно, возникает технологическая сложность в обеспечении требуемых механических свойств, соответствующих классу прочности 260 в холоднокатаной полосе, предназначенной для последующей холодной штамповки.

Наиболее близким аналогом к заявляемому объекту является способ производства холоднокатаных полос толщиной 0,15-3,0 мм, полученных из горячекатаной травленой полосы из низколегированной стали, содержащей следующие компоненты, мас.%:

углерод 0,06-0,10
марганец 0,20-0,50
кремний 0,01-0,30
медь 0,01-0,30
алюминий 0,02-0,07
фосфор 0,07-0,12
азот 0,003-0,009
сера 0,005-0,025
кальций 0,0005-0,001
бор 0,0008-0,005
хром 0,01-0,30
никель 0,01-0,30
титан 0,002-0,02
железо и неизбежные примеси остальное

(см. Патент РФ №2362815).

Недостаток известного способа заключается в сложности обеспечения в готовой холоднокатаной полосе соответствующего классу прочности 260 требуемого комплекса равномерно распределенных по длине полосы механических свойств, в частности, временного сопротивления разрыву σв>390 Н/мм2, относительного удлинения δ80>30%. Это связано с отсутствием в структуре известной низколегированной стали достаточного количества упрочняющих фаз, формирование которых обусловлено дополнительным микролегированием, а также температурными режимами при горячей прокатке и смотке полосы в рулон. При этом в известной низколегированной стали отсутствуют условия, сдерживающие рост зерна в процессе рекристаллизации на стадии горячей прокатки, и, как следствие, формируется разнозернистая структура. Данная структура при последующей холодной прокатке полосы толщиной 0,6-3,0 мм на непрерывном стане с суммарными относительными обжатиями до 60-70% при отсутствии четкой регламентации толщины подката приводит к возникновению трещин, многочисленных порывов, что, в свою очередь, не позволяет обеспечивать требуемое качество производимой холоднокатаной полосы на всей ее длине и существенно снижает выход годного.

Технической задачей, решаемой настоящим изобретением, является обеспечение соответствующего классу прочности 260 комплекса механических свойств по всей длине холоднокатаной полосы из низколегированной стали и повышение выхода годной продукции (более 95%).

Поставленная задача решается тем, что в известном способе производства холоднокатаных полос низколегированной стали класса прочности 260 толщиной 0,6-3,0 мм, включающем выплавку, разливку стали с получением кристаллизованного сляба, его горячую прокатку в клетях широкополосного стана с охлаждением водой поверхности полосы и ее смотку в рулон, удаление окалины с поверхности полосы травлением, холодную прокатку на непрерывном стане, термообработку и последующую дрессировку, согласно изобретению выплавляют сталь при следующем соотношении компонентов, мас.%:

углерод 0,06-0,10
марганец 0,20-0,50
кремний 0,01-0,30
медь 0,01-0,30
алюминий 0,02-0,07
фосфор 0,07-0,12
азот 0,003-0,009
сера 0,005-0,025
кальций 0,0005-0,001
бор 0,0008-0,005
хром 0,01-0,30
никель 0,01-0,30
ниобий + молибден + ванадий + титан ≤0,032
железо остальное,

горячую прокатку проводят с получением горячекатаной полосы толщиной по зависимости:

где hгк - толщина горячекатаной полосы, мм;

hхк - конечная толщина холоднокатаной полосы, мм,

при этом температуру конца прокатки и смотки полосы в рулон выбирают в зависимости от толщины горячекатаной полосы соответственно: для полос толщиной более 4,01 мм - 800-820°С, 535-565°С, толщиной от 3,01 до 4,00 мм - 820-840°С, 565-595°С, толщиной от 2,00 до 3,00 мм - 840-860°С, 595-625°С.

Сущность заявляемого технического решения заключается в применении микролегирования карбонитридообразующими элементами низколегированной стали, в выборе толщины горячекатаного подката в зависимости от конечной толщины холоднокатаной полосы, а также регламентации температурных режимов горячей прокатки и смотки горячекатаной полосы в рулон в зависимости от ее толщины, что в совокупности позволяет обеспечить повышение выхода годной холоднокатаной металлопродукции с требуемым по всей длине полосы уровнем механических свойств, соответствующих классу прочности 260.

В заявленном способе границы и диапазон содержания основных химических элементов: углерода, марганца, кремния, меди, алюминия, фосфора, кальция, бора, азота, серы, хрома, никеля и титана, определены, как и в способе-прототипе, из соображений обеспечения максимально возможного упрочнения ферритной матрицы, при одновременном повышении пластических свойств для увеличения выкатываемости и штампуемости. В то же время для дополнительного упрочнения проката из стали заявленного химического состава применена стратегия дополнительного микролегирования элементами Nb, V и Мо. Это объясняется следующим. Для обеспечения требуемого комплекса механических свойств по всей длине горячекатаного подката, предназначенного для дальнейшего производства холоднокатаной полосы, соответствующей классу прочности 260, необходимо на стадии горячей прокатки сформировать структуру с мелким зерном полигонизованного феррита и дисперсными выделениями карбонитридов, что обеспечивает повышение прочностных свойств (при оптимальном соотношении предела текучести к пределу прочности σтв<0,70÷0,75), с одной стороны, и улучшает пластические свойства (δ80), с другой.

Как известно, при одновременном микролегировании α-феррита атомами нескольких (4-5) легирующих (микролегирующих) элементов их влияние на упрочнение может быть просуммировано (см. Специальные стали. М.И.Гольдштейн, С.В.Грачев, Ю.Г.Векслер. - 2-е изд., перераб. и доп. - М.: «МИСИС», 1999. - 408 С.). В небольших количествах сильные карбонитридообразующие элементы Nb, Ti, V и Мо существенно упрочняют сталь в результате образования мелкодисперсных частиц и измельчения зерна феррита. При определенном их соотношении в стали прочностные параметры последней резко изменяются. Физическая природа этого явления заключается в том, что в низколегированных сталях Ti, V и Nb полностью входят в состав карбонитридной фазы, а Мо распределен между ферритом и карбидами. При этом микродобавки (например, V и Ti) практически не влияют на температуру рекристаллизации, а только несколько сдерживают рост зерен после рекристаллизации. Наличие Nb заметно задерживает начало рекристаллизации и рост зерен после ее окончания, что способствует образованию мелкого зерна в структуре стали. Выбор границы содержания Nb, V, Ti и Мо связан с необходимостью формирования зерна не крупнее 8-10 баллов для обеспечения выкатывемости подката заданной толщины в холоднокатаную полосу конечной толщины. При суммарном содержании дополнительно вводимых микролегирующих элементов (Nb, V и Мо) с учетом содержания Ti более 0,032% возникает существенное упрочнение ферритной матрицы, не позволяющее обеспечить эффективную переработку горячекатаного подката в холоднокатаную и холодноштампованную продукцию из-за многочисленных порывов и образующихся трещин в процессе пластической деформации с суммарными обжатиями в диапазоне 60-70%.

Как известно, величина и форма аустенитного зерна зависят от скорости рекристаллизации при прокатке. Поэтому получение требуемого комплекса механических свойств для обеспечения повышенной штампуемости металлопроката из низколегированной стали класса прочности 260 с применением микролегирования должно достигаться формированием мелкозернистой структуры феррита, одним из главных условий получения которой является наличие мелкозернистой структуры аустенита. Она, в свою очередь, может быть получена при определенных температурах прокатываемого металла, что соответствует окончанию горячей прокатки в аустенитной области при температуре, близкой к температуре аустенитного превращения. Для этого температуру конца прокатки необходимо принимать равной или близкой к точке Ас3 диаграммы «железо-углерод», так как в полосах из низколегированных сталей заявляемого химического состава интенсивная рекристаллизация начинается при температурах 805-855°С. Особенно важно соблюдение этих условий в конце горячей прокатки полос толщиной <25 мм (см., Регламентированная горячая прокатка полос на непрерывных станах. Tomczykiewicz Jan, Wegrzyn Aleksander. Regulowane walcowanie blach w garacej walcowni ciaglej. «Prz. now. hutn. ze-laza», 1976, 4, №2, 63-67).

Из этих условий выбран в заявляемом способе интервал температур конца прокатки, так как именно в указанном диапазоне (800-860°С) обеспечивается получение требуемой микроструктуры. Кроме того, границы температур конца прокатки в зависимости от толщины горячекатаной полосы определены из условия: чем толще полоса, тем большей теплоемкостью она обладает. Соответственно, для выравнивания свойств и формирования равнобальной микроструктуры с зерном 8-10 баллов в готовой горячекатаной полосе температурный интервал конца горячей прокатки на меньших толщинах смещен к более высоким температурам.

Указанными обстоятельствами также определяется заявляемый температурный интервал смотки горячекатаной полосы в рулон в диапазоне 545-615°С в зависимости от ее конечной толщины. Температура смотки для выбранного класса сталей должна быть максимально приближена к такой, чтобы обеспечивать оптимальную скорость охлаждения на отводящем рольганге стана горячей прокатки для более полной стабилизации углерода, путем выделения или довыделения карбидов (карбосульфидов) титана, что позволяет получать относительно низкие значения предела текучести и отсутствие площадки текучести у горячекатаного подката (см. Black W., Bode R., Hahn P. Interstitial-free Steels: Processing, Properties and Application. In: Metallurgy of Vacuum-Degassed Steel Products, 1990, pp.73-90).

Кроме того, при отсутствии заявляемой регламентации температурных режимов конца прокатки и смотки в зависимости от конечной толщины горячекатаной полосы в микроструктуре стали при заниженных температурах конца прокатки и смотки (меньше нижней заявляемой границы температуры для соответствующих толщин) может появиться значительная разнобальность в структуре (более трех смежных значений). С другой стороны, при температурах концах прокатки и смотки выше заявляемой в микроструктуре формируется крупное зерно (крупнее 8 балла), снижается общая прочность, при этом также снижается и пластичность, а предел текучести практически не изменяется, что ведет к росту показателя σтв, т.е. снижению штампуемости. Это приводит к тому, что в процессе дальнейшей переработки горячекатаного подката в холоднокатаную металлопродукцию возникает проблема выкатываемости полосы на требуемую толщину. Кроме того, появляются технологические сложности переработки полосы из-за многочисленных порывов в процессе холодной прокатки из-за образования микротрещин, в том числе по кромкам полосы, что существенно снижает выход годной металлопродукции.

В случае применения заявленной регламентации температурного режима проведения процесса горячей прокатки и смотки формируется микроструктура с зерном феррита 8-10 баллов, что с точки зрения способности металла к дальнейшей переработки путем холодной прокатки и последующей глубокой вытяжки является наиболее оптимальным. Предел текучести σт при этом в низколегированной стали с микролегированием карбонитридообразующими элементами в холоднокатаном состоянии достигает 270-285 Н/мм2, временное сопротивление разрыву σв - до 420 Н/мм2 (соотношение σтв находится в интервале 0,65-0,70), относительное удлинение (δ80) - не менее 30%, что соответствует классу прочности стального проката 260. При этом в процессе переработки горячекатаного подката в холоднокатаную и далее в холодноштампованную продукцию за счет оптимальной микроструктуры по всему сечению и длине полосы, исключения образования трещин по кромкам полосы, а также ее обрывности существенно повышается выход годного.

Приведенная математическая зависимость, связывающая толщину горячекатаной полосы с конечной толщиной холоднокатаной полосы, - эмпирическая и получена при обработке опытных данных при прокатке заявляемого размерно-марочного сортамента на широкополосном стане 2000 горячей прокатки и непрерывном четырехклетевом стане 2500 холодной прокатки ОАО «Магнитогорский металлургический комбинат». Данная зависимость позволяет обеспечить высокую выкатываемость горячекатаного подката в холоднокатаную полосу заданной конечной толщины без образования микротрещин и порывов, а также оптимальные энергосиловые параметры прокатного оборудования.

Таким образом, представленная совокупность признаков заявляемого способа производства холоднокатаных полос низколегированной стали класса прочности 260 толщиной 0,6-3,0 мм из низколегированной стали, микролегированной карбонитридообразующими элементами, позволяет производить высококачественную металлопродукцию с требуемыми равными по всей длине готовой полосы механическими свойствами, при этом обеспечивается повышение выхода годного холоднокатаного проката.

Пример осуществления способа

Выплавили кислородно-конвертерным методом 3 плавки стали заявленного состава (см. табл.1). После проведения внепечной обработки металла и введения требуемых добавок осуществляли непрерывную разливку стали с последующей ее кристаллизацией и порезкой на слябы. Далее производили горячую прокатку слябов на полосы требуемой толщины, которую предварительно определяли по заявляемой эмпирической зависимости, исходя из заданной конечной толщины холоднокатаной полосы. Затем горячекатаные полосы подвергали солянокислому травлению, холодной прокатке, рекристаллизационному отжигу и дрессировке. Испытанием на растяжение определяли основные механические свойства холоднокатаной полосы по ее длине: предел текучести σт, временное сопротивление разрыву σв, относительное удлинение δ80. Для чего образцы для испытаний отбирались с переднего и заднего концов рулона, а также в зоне сварного шва (серединная часть полосы по ее длине). Выход годного оценивался по отсутствию порывов и микротрещин на поверхности полосы в процессе холодной прокатки.

Варианты технологических параметров, по которым по заявляемому способу осуществлялись горячая и холодная прокатка полос толщиной 0,6-3,0 мм из стали класса прочности 260, микролегированной карбонитридообразующими элементами на широкополосном стане горячей прокатки 2000 и непрерывном четырехклетевом стане холодной прокатки 2500 ОАО «Магнитогорский металлургический комбинат», а также результаты исследований представлены в таблице 2.

Заявляемая технология производства рулонов на примере производства холоднокатаных полос из низколегированной стали класса прочности 260 обеспечивает получение следующих механических свойств: σт≥270 Н/мм2,

σв≥380 Н/мм2, δ80>28%, что соответствует требованиям к сталям класса прочности 260.

На основании вышеизложенного можно сделать вывод, что заявляемый способ работоспособен и устраняет недостатки, имеющие место в прототипе.

Заявляемый способ может найти широкое применение при производстве холоднокатаной рулонной металлопродукции класса прочности 260 для последующей штамповки кузовных деталей автомобиля.

Способ производства холоднокатаных полос низколегированной стали класса прочности 260 толщиной 0,6-3,0 мм, включающий выплавку, разливку стали с получением кристаллизованного сляба, его горячую прокатку в клетях широкополосного стана с охлаждением водой поверхности полосы и ее смотку в рулон, удаление окалины с поверхности полосы травлением, холодную прокатку на непрерывном стане, термообработку и последующую дрессировку, отличающийся тем, что выплавляют сталь при следующем соотношении компонентов, мас.%: горячую прокатку проводят с получением горячекатаной полосы толщиной по зависимости где h- толщина горячекатаной полосы, мм;h - конечная толщина холоднокатаной полосы, мм,при этом температуру конца прокатки и смотки полосы в рулон выбирают в зависимости от толщины горячекатаной полосы соответственно: для полос толщиной более 4,01 мм - 800-820°С, 535-565°С, толщиной от 3,01 до 4,00 мм - 820-840°С, 565-595°С, толщиной от 2,00 до 3,00 мм - 840-860°С, 595-625°С.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 69.
26.08.2017
№217.015.e14d

Способ доменной плавки

Изобретение относится к черной металлургии и может быть использовано при выплавке чугуна в доменных печах. Способ доменной плавки включает загрузку основных компонентов шихты и удаление настылей периодической загрузкой железорудной шихты, обладающей промывочными свойствами. При этом используют...
Тип: Изобретение
Номер охранного документа: 0002625620
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e237

Способ производства листовой стали с высокой износостойкостью

Изобретение относится к области черной металлургии, в частности к производству высокотвердого износостойкого листового проката для тяжелой подъемно-транспортной техники. Для обеспечения высокой твердости и прочности при сохранении достаточной пластичности и ударной вязкости получают слябы...
Тип: Изобретение
Номер охранного документа: 0002625861
Дата охранного документа: 19.07.2017
19.01.2018
№218.016.0631

Способ производства инструментального высокопрочного листового проката

Изобретение относится к черной металлургии, в частности к производству высокопрочного листового проката из инструментальной стали для высокоточного машиностроительного оборудования. Для обеспечения высоких прочностных свойств и твердости при сохранении достаточной пластичности и ударной...
Тип: Изобретение
Номер охранного документа: 0002631063
Дата охранного документа: 18.09.2017
29.05.2018
№218.016.53f9

Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в hs -содержащих средах

Изобретение относится к области металлургии. Для обеспечения высокой стойкости против разрушения в среде так называемого «кислого» газа: индуцированное водородом растрескивание и сульфидное растрескивание под напряжением, в сочетании с высокой прочностью, пластичностью и вязкостью выплавляют...
Тип: Изобретение
Номер охранного документа: 0002653954
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.54d6

Высокопрочная высокотвердая сталь и способ производства листов из нее

Изобретение относится к области черной металлургии, а именно к производству высокопрочного высокотвердого листового проката для противопульной защиты корпуса транспортных средств. Предлагаемый прокат выполнен из стали, содержащей в мас.%: от более 0,25 до 0,40 С; 0,10-0,70 Si; 0,65-1,80 Mn;...
Тип: Изобретение
Номер охранного документа: 0002654093
Дата охранного документа: 16.05.2018
01.03.2019
№219.016.ceb5

Способ производства листов из низколегированной трубной стали

Изобретение предназначено для улучшения механических характеристик широких горячекатаных листов из марок стали трубного сортамента, например, класса прочности К52-К60. Равномерное распределение по сечению горячекатаного листового проката толщиной 14-21 мм повышенных механических свойств...
Тип: Изобретение
Номер охранного документа: 0002458752
Дата охранного документа: 20.08.2012
01.03.2019
№219.016.cebd

Способ производства листов из низколегированной трубной стали классов прочности к52-к60

Изобретение предназначено для улучшения механических характеристик широких горячекатаных листов из марок стали трубного сортамента класса прочности К52-К60. Одинаковые механические свойства, соответствующие классу прочности К52-К60, в широком диапазоне толщин 14-21 мм горячекатаного проката из...
Тип: Изобретение
Номер охранного документа: 0002458751
Дата охранного документа: 20.08.2012
01.03.2019
№219.016.cec1

Способ производства листов из низколегированной трубной стали

Изобретение предназначено для улучшения свойств широких горячекатаных листов из марок стали трубного сортамента, например, класса прочности К52-К60, повышающих технологичность производства электросварных труб. Способ включает нагрев слябовой заготовки до температуры выше Ac, черновую прокатку,...
Тип: Изобретение
Номер охранного документа: 0002458753
Дата охранного документа: 20.08.2012
01.03.2019
№219.016.ced8

Способ производства горячекатаной канатной катанки

Изобретение предназначено для повышения потребительских свойств горячекатаного мелкосортного проката, в частности канатной катанки. Способ включает горячую прокатку металла, его охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства. Получение оптимальных...
Тип: Изобретение
Номер охранного документа: 0002457911
Дата охранного документа: 10.08.2012
01.03.2019
№219.016.cedf

Способ охлаждения рабочих валков станов горячей прокатки

Изобретение предназначено для повышения стойкости рабочих валков, используемых при горячей прокатке листов и полос. Способ включает подачу водовоздушной смеси на участок поверхности бочки в зоне выхода из очага деформации. Снижение перегрева рабочих валков, уменьшение образования сетки трещин...
Тип: Изобретение
Номер охранного документа: 0002457913
Дата охранного документа: 10.08.2012
Показаны записи 51-60 из 66.
19.06.2019
№219.017.84a3

Способ горячей прокатки полос

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос. Задачей, решаемой заявляемым изобретением, является уменьшение поперечной разнотолщинности широкого проката. В способе горячей прокатки полос, включающем прокатку полос на...
Тип: Изобретение
Номер охранного документа: 0002288051
Дата охранного документа: 27.11.2006
19.06.2019
№219.017.85b9

Горячекатаная широкополосная сталь

Изобретение предназначено для повышения качества широкополосной (листовой) стали и полосы, получаемой последующей холодной прокаткой. Предотвращение появления на холоднокатаных полосах дефекта «излом» обеспечивается за счет того, что предельные отклонения по толщине полос толщиной h=1,8...6,0...
Тип: Изобретение
Номер охранного документа: 0002344008
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85dc

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для повышения выхода годного металлопроката при производстве широких горячекатаных полос, преимущественно трубных марок стали с содержанием углерода 0,17-0,22%, толщиной 4-16 мм, производимых на станах горячей прокатки с максимальным усилием прокатки в каждой клети...
Тип: Изобретение
Номер охранного документа: 0002343019
Дата охранного документа: 10.01.2009
19.06.2019
№219.017.8655

Способ производства рулонной холоднокатаной стали

Изобретение предназначено для производства полосовой холоднокатаной стали, смотанной в рулон. Способ включает травление горячекатаных полос с их правкой растяжением, холодную прокатку, продольный роспуск и смотку готовых полос в рулоны. Снижение производственных затрат и улучшение...
Тип: Изобретение
Номер охранного документа: 0002314885
Дата охранного документа: 20.01.2008
19.06.2019
№219.017.8658

Способ холодной прокатки

Способ предназначен для улучшения потребительских свойств тонколистовой низкоуглеродистой стали с содержанием углерода 0,18...0,22 вес.%, толщиной 0,60...1,35 мм, σ=250...380 МПа, экономии металла за счет уменьшения толщины листов в процессе холодной прокатки на реверсивных станах. Способ...
Тип: Изобретение
Номер охранного документа: 0002314886
Дата охранного документа: 20.01.2008
19.06.2019
№219.017.8688

Способ производства рулонной холоднокатаной стали

Изобретение относится к прокатному производству, в частности к технологии получения тонколистовой холоднокатаной стали в рулонах. Для улучшения потребительских свойств рулонной холоднокатаной стали и уменьшения расхода валков при прокатке на реверсивном стане осуществляют прокатку полос...
Тип: Изобретение
Номер охранного документа: 0002315118
Дата охранного документа: 20.01.2008
19.06.2019
№219.017.8692

Способ смотки после продольного роспуска холоднокатаной полосовой стали

Изобретение относится к отделке листового (полосового) проката и, в частности, к способу смотки после продольного роспуска холоднокатаной полосовой стали. Способ включает создание заданного суммарного натяжения Т полученных полос и при смотке толщиной h<0,8 мм, 0,8 мм, 0,9 мм, 1,0 мм, 1,2...1,4...
Тип: Изобретение
Номер охранного документа: 0002318624
Дата охранного документа: 10.03.2008
19.06.2019
№219.017.8710

Способ производства полосовой стали

Изобретение предназначено для повышения потребительских свойств полосовой горячекатаной стали. Способ включает горячую прокатку, травление, отжиг и продольный роспуск горячекатаной рулонной полосы. Повышение точности размеров и улучшение штампуемости стали при изготовлении автодеталей...
Тип: Изобретение
Номер охранного документа: 0002350414
Дата охранного документа: 27.03.2009
19.06.2019
№219.017.8773

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для обеспечения в горячекатаном прокате толщиной 4,5-10 мм из стали трубного сортамента, имеющей пониженное содержание углерода и микролегированной ниобием, механических свойств, соответствующих классу прочности Х52. Способ включает нагрев сляба под горячую прокатку,...
Тип: Изобретение
Номер охранного документа: 0002373003
Дата охранного документа: 20.11.2009
29.06.2019
№219.017.9de4

Низкоуглеродистая холоднокатаная листовая сталь

Изобретение относится к черной металлургии, а именно к холоднокатаной листовой стали для штамповки и холодной формовки. Сталь содержит углерод, марганец, кремний, серу, фосфор, хром, никель, медь, азот, алюминий и железо при следующем соотношении компонентов, мас.%: углерод 0,05÷0,07, марганец...
Тип: Изобретение
Номер охранного документа: 0002379369
Дата охранного документа: 20.01.2010
+ добавить свой РИД