×
10.04.2019
219.017.07ff

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ - ГИДРОКСИЛАПАТИТЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины. Описан гидроксилапатит с частицами наноразмеров, который может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. Изобретение направлено на создание в готовых изделиях гидроксилапатита частиц наноразмеров без применения термообработки. Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию тормозного излучения, генерируемого в гидроксилапатите быстрыми электронами, испускаемыми радиоизотопным источником Sr+Y, в интервале поглощенных доз излучения от 3,3 до 66 рад. Результат изобретения это уменьшение хрупкости костезамещающего материала. 1 табл.

Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей.

Наиболее близким к заявляемому способу является способ создания в гидроксилапатите частиц наноразмеров [1]. Недостатками прототипа являются: во-первых, использование микроволнового излучения, которое позволяет получить частицы со средним размером 220 нм, не являющиеся наночастицами, во-вторых, необходимость термообработки для получения частиц наноразмеров, в-третьих, получение наночастиц в исходном материале, а не в готовых изделиях.

Заявляемое изобретение направлено на создание в готовых изделиях гидроксилапатита частиц наноразмеров без применения термообработки.

Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию тормозного излучения, генерируемого в гидроксилапатите быстрыми электронами, испускаемыми радиоизотопным источником 90Sr+90Y, в интервале поглощенных доз излучения от 3,3 до 66 рад.

Отличительными признаками заявляемого изобретения являются:

- облучение готовых изделий, выполненных из гидроксилапатита;

- облучение готовых изделий при комнатной температуре;

- использование радиоизотопного источника быстрых электронов 90Sr+90Y;

- значение нижнего предела поглощенной дозы излучения, равное 3,3 рад;

- значение верхнего предела поглощенной дозы излучения, равное 66 рад.

Экспериментально установлено, что средние размеры блоков (кристаллитов) гидроксилапатита превышают 100 нм, если значения поглощенной дозы излучения менее 3,3 рад.

Экспериментально установлено, что средние размеры блоков гидроксилапатита превышают 100 нм, если значения поглощенной дозы излучения более 66 рад.

Экспериментально установлено, что средние размеры блоков гидроксилапатита составляют менее 100 нм, если значения поглощенной дозы излучения лежат в интервале 3,3-66 рад.

Сущность заявляемого изобретения поясняется нижеследующим описанием.

В качестве эмиттера электронов использовался радиоизотопный источник 90Sr+90Y, содержащий смесь радиоактивных изотопов стронция 90 и иттрия 90 [2]. Этот источник электронов обладает рядом преимуществ по сравнению с обычно используемыми ускорителями электронов, главными из которых являются: отсутствие потребления электроэнергии, большой срок службы, малые габариты и простота эксплуатации. Энергетический спектр электронов источника Sr90Y90 весьма широк: он простирается от практически нулевых энергий до Е0=2,27 МэВ. Кривая распределения бета-частиц по энергиям имеет максимум Е≈1/3Е0=0,76 МэВ.

Средние размеры блоков (кристаллитов)) определялись методом рентгеновской дифрактометрии [3] при помощи автоматизированного рентгеновского дифрактометра марки "ДРОН-4". Использовалось излучение CoKα, монохроматизированное отражением от пирографита на дифрагированном пучке. Применялось шаговое сканирование: шаг 0,1 угл. град, время регистрации τ в точке 10 с, интервал 30-100 (в брегговских углах 2θ).

Для определения среднего размера блоков использовались программы OUTSET и PROFILE [4], а также аналитический метод [5].

Программа PROFILE основана на мозаичной модели кристалла [3]. Расчет размеров мозаичных блоков связан с некоторыми ограничениями, обусловленными принципиальными возможностями метода аппроксимации [3]. Так, этот метод не способен определить размер блоков мозаики, если он превышает 250 нм [6].

Проверка достижения заявленного технического результата осуществлялась следующим образом. Из гидроксилапатита Са5[(PO4)3ОН] [7] изготавливались образцы, имеющие форму цилиндров ⌀ 9 мм и высотой ≈9 мм. С одной из плоских поверхностей они облучались быстрыми электронами от радиоизотопного источника 90Sr+90Y. Один из образцов, находящийся в исходном состоянии, и облученные образцы исследовались методом рентгеновской дифрактометрии. Исследования облученных образцов проводилось на плоских поверхностях, противоположных облученным электронами, т.е. на эти поверхности действовало только тормозное излучение, генерируемое электронами.

В таблице приведены результаты экспериментов.

Средние размеры блоков мозаики в образцах гидроксилапатита, определенные при помощи двух методов расчета на поверхностях, противоположных облученным электронами

Dпогл.γ,рад D, нм
Метод расчета
PROFILE [4] Аналитический метод [5]
0 227±59 144,2±63,4
3,3+0,7 116±21 75,2±23,2
6,6+0,7 96±10 64,7±13,0
13,2±0,7 49±2 36,9±5,6
66±1,3 112±24 74,5±26,6
660±1,3 220±61 138,4±63,3

Из таблицы очевидно, что в интервале поглощенных доз излучения от 3,3 до 66 рад значение средних размеров блоков (кристаллитов) D составляет менее 100 нм, причем при Dпогл=13,2 рад достигается минимальный средний

размер блоков. За пределами интервала 3,3-66 рад значения D превосходят 100 нм. Согласно общепринятому в научной литературе определению [8], к наночастицам относятся частицы, размер которых не превышает 100 нм. Таким образом, только в интервале поглощенных доз излучения 3,3-66 рад при облучении образцов гидроксилапатита тормозным излучением образуются наночастицы.

Заметим, что при анализе результатов, помещенных в табл.1, мы пользуемся данными, полученными при помощи метода [5], а не метода [4], поскольку метод [5] более адекватно отражает реальность [5].

Заметим также, что, хотя при рентгеновском измерении образцу гидроксилапатита передается поглощенная доза излучения, равная 16,1±0,5 кГр, что на 3-5 порядков больше доз, представленных в табл.1, она не сказывается на результатах измерения.

Образцы гидроксилапатита с минимальными размерами блоков (кристаллитов) обладают уникальными механическими характеристиками:

модуль упругости уменьшается в 6 раз, деформация сжатия при максимальном механическом напряжении возрастает в 2 раза, предельная деформация сжатия - ≈ в 1,75 раза по сравнению с образцами, находящимися в исходном состоянии.

Источники информации

1. Заявка США US 2005/226939 А1 от 13.10.2005. INt.Cl7 A61E 5/055, A61К 33/42; US C1 424/602, 423/308 "Production of nano-sized hydroxyapatite particles" Заявитель National University of Singapore (Прототип).

2. Яворский Б.М., Детлаф А.А. Справочник по физике. // М.: Физматгиз, 1963-848 с.

3. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. Изд. 4-е. - М.: МИСиС, 2002. - 360 с.

4. Шелехов Е.В., Свиридова Т.А. Программы для рентгеновского анализа поликристаллов. // Металловедение и термическая обработка металлов. - 2000. - №8. - С.16-19.

5. Коршунов А.Б. Аналитический метод определения параметров тонкой кристаллической структуры по уширению рентгеновских линий. // Заводская лаборатория. Диагностика материалов. - 2004. - Т.70, №2. - С.27-32.

6. Кристаллография, рентгенография и электронная микроскопия. / Я.С.Уманский, Ю.А.Скаков, А.Н.Иванов, Л.Н.Расторгуев. - М.: Металлургия, 1982. - 632 с.

7. Получение гидроксилапатита гидролизом α-Са3(PO4)2 / Синицына О.В., Вересов А.Г., Ковалева Е.С. и др. // Известия Академии Наук. Серия химическая, 2005, №1. - С.78-85.

8. Гуткин М.Ю., Овидько И.А. Предел текучести и пластическая деформация нанокристаллических материалов. // Успехи механики. - 2003. - №1. - С.68-125.

Способ создания наночастиц в изделии из гидроксилапатита посредством радиационной обработки, заключающийся в том, что изделие при комнатной температуре подвергают воздействию тормозного излучения, генерируемого быстрыми электронами, испускаемыми радиоизотопным источником Sr+Y, в интервале поглощенных доз излучения от 3,3 до 66 рад.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
19.04.2019
№219.017.3299

Нанобиоцемент и способ его получения в готовых изделиях из гидроксилапатита

Изобретение относится к области медицины. Описан нанобиоцемент, который может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. В готовых изделиях гидроксилапатита, облученных быстрыми...
Тип: Изобретение
Номер охранного документа: 0002409393
Дата охранного документа: 20.01.2011
Показаны записи 1-10 из 68.
20.06.2013
№216.012.4b32

Способ получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия

Изобретение относится к способу получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия, который характеризуется антиоксидантной активностью. Способ включает приготовление водного раствора соли церия и стабилизатора, представляющего собой мальтодекстрин, с мольным...
Тип: Изобретение
Номер охранного документа: 0002484832
Дата охранного документа: 20.06.2013
20.10.2013
№216.012.74c7

Устройство для получения семян шишек хвойных культур и их предпосевной обработки

Установка содержит сортировочный барабан, камеру сушки шишек подогретым воздухом с устройством для открывания решетчатых створок стеллажей, транспортеры для подачи шишек в камеру сушки и отбивочный барабан. Кроме того, установка имеет емкость для водной сепарации семян и емкость с двумя...
Тип: Изобретение
Номер охранного документа: 0002495555
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7775

Станция помех

Изобретение относится к области радиотехники и может быть использовано для создания прицельных по частоте и заградительных по коду помех. Технический результат - повышения эффективности станции помех. Применение в системе передачи данных (СПД) ограниченного количества видов М-последовательности...
Тип: Изобретение
Номер охранного документа: 0002496241
Дата охранного документа: 20.10.2013
20.11.2013
№216.012.806b

Устройство для свч предпосевной и послеуборочной обработки семян

Устройство для предпосевной обработки семян включает загрузочный бункер-дозатор для подачи семян в камеру увлажнения семян с распылителем раствора, СВЧ-камеру, соединенную с СВЧ-источником и сообщенную с камерой увлажнения семян, расположенный снизу СВЧ-камеры направляющий воздуховод и приемный...
Тип: Изобретение
Номер охранного документа: 0002498551
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.8529

Способ получения канафита

Изобретение относится к способу получения канафита, т.е. гидратированного двойного пирофосфата натрия кальция (NaCaPO*4HO). Способ включает дозирование исходных компонентов: воды, кристаллогидрата пирофосфата натрия, ацетата кальция или кристаллогидрата нитрата кальция при мольном отношении...
Тип: Изобретение
Номер охранного документа: 0002499767
Дата охранного документа: 27.11.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a265

Способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где...
Тип: Изобретение
Номер охранного документа: 0002507288
Дата охранного документа: 20.02.2014
10.08.2014
№216.012.e65b

Способ получения дентального имплантата погружного типа из титана или титанового сплава и дентальный имплантат из титана или титанового сплава

Изобретение относится к медицине, а именно к стоматологии, и предназначено для получения дентального имплантата для пациентов с нарушенной костной структурой и регенерацией. Имплантат получают из титана или титанового сплава путем фрезерования заготовки, очистки ее, образования микрошероховатой...
Тип: Изобретение
Номер охранного документа: 0002524764
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eaa1

Способ стабилизации механических характеристик изделий из твердых сплавов

Изобретение относится к металлургии, преимущественно к способам модификации изделий из твердых сплавов, применяемых для холодной и горячей механической обработки металлов и металлических сплавов, например, резанием. Твердосплавное изделие облучают быстрыми электронами при флюенсах, меньших 1·10...
Тип: Изобретение
Номер охранного документа: 0002525873
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f7ae

Устройство для разъемного соединения швартовного турельного узла судна

Изобретение относится к области судостроения, а именно к разъемным швартовным турельным устройствам, и может быть использовано при создании морских судов и платформ, предназначенных для эксплуатации в ледовых условиях. Устройство для разъемного соединения швартовного турельного узла судна...
Тип: Изобретение
Номер охранного документа: 0002529243
Дата охранного документа: 27.09.2014
+ добавить свой РИД