×
10.04.2019
219.017.05db

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа, содержащий в качестве активных компонентов оксид кобальт, оксид марганца и оксид бария, в качестве носителя - жаростойкий армированный металлопористый носитель. Катализатор готовят пропиткой носителя раствором солей бария и марганца с соотношением Ва/Mn=5/4, сушкой и последующей прокалкой, затем проводят пропитку раствором соли кобальта с последующей сушкой и прокаливанием. Описан способ получения синтез-газа автотермической конверсией углеводородного топлива, который осуществляют с использованием описанного выше катализатора. Технический результат - катализатор характеризуется высокой теплопроводностью и проявляет высокую активность в получении синтез-газа, устойчив к коксообразованию и дезактивации сернистыми соединениями, содержащимися в дизельном топливе, бензине. 3 н. и 3 з.п. ф-лы, 1 табл.

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике, в том числе - в топливных элементах (ТЭ), для восстановления окислов азота на борту транспортного средства.

Анализ патентных данных [US 6969411, B01J 12/00, 07.04.2005; US 6949683, В01J 23/63, 26.06.03; US 6835354, C01B 3/38, 13.06.2002; US 6797244, B01J 12/00, 28.09.2004; US 6620389, B01F 3/02, 16.09.2003; US 6436363, B01J 23/42, 20.08.2002; US 6409974, A61B 17/04, 25.06.2002] показывает, что основное направление разработок катализаторов автотермической конверсии углеводородного топлива связано с нанесенными катализаторами платиновой группы, таких как Rh, Pt, Pd, оксидами металлов со структурой перовскитов (LaCrO3, LaMnO3, LaFeO3, LaCoO3, LaNiO3). Для увеличения серостойкости и активности катализаторы были дополнительно допированы гадолинием и оксидом церия.

В работах [J.M.Mawdsley, M.Ferrandon, С.Rossignol, J.Ralph, L.Miller, J.Kopasz, T.Krause. "Catalysts for autothermal reforming". In ANL FY Progress Report "Hydrogen, Fuel Cells, and Infrastructure Technologies" 2003. T.Krause, M.Ferrandon, J.Mawdsley, J.Ralph. "Catalysts for autothermal reforming". In ANL FY Progress Report "DOE Hydrogen Program" 2004] на реакции автотермической конверсии бензина было показано, что Rh и Rh-Pt с добавками Gd и CeO2 обеспечивают выход 8.7 и 9.3 моль водорода на моль бензина при температурах 700-750°С. Катализаторы на основе платины при этих же условиях обеспечивают выход только 2.5 моль водорода. При этом выход метана составляет 0.4 моль на моль бензина. Добавка сернистых соединений на уровне 30-50 ppm значительно снижает активность катализаторов. Однако при повышении температуры реакции до 800°С влияние серы значительно уменьшается, особенно для катализаторов Rh/Al2О3. В этих работах также отмечено значительное влияние носителя на выход водорода. Так при использовании в качестве катализатора Rh/Al2O3 выход водорода составляет 12 моль на моль бензина, на катализаторе Rh/CeO2 эта величина равна 7 моль на моль бензина, для катализаторов на основе перовскитов выход соответственно равен 8 моль на моль бензина.

Наиболее близким к предлагаемому нами катализатору является катализатор получения синтез-газа автотермической конверсией дизельного топлива [US 6969411, В01J 2/00, 07.04.2005]. Катализатор - монолитный блок из металлической пены, разделенный на две каталитические зоны. На входе располагается металлическая пена с подложкой из оксида алюминия, с нанесенными активными компонентами из оксида кальция, оксида железа, и/или пропитанная Pt, Pd или Rh. Добавки благородных металлов составляют от 0.1 до 1.0% от массы катализатора. На выходе: металлическая пена с подложкой из оксида алюминия с нанесенными активными компонентами Ni или благородные металлы. Процесс осуществляют при входной температуре смеси 250°С.

Недостатком данного катализатора является то, что структура носителя из металлической пены носит нерегулярный характер с большим разбросом размеров пор. Он имеет высокую пористость и замкнутые поры, что снижает теплопроводность и удельную поверхность, а также механические характеристики. Он имеет недостаточную устойчивость к коксообразованию. Кроме того, по указанной технологии трудно изготовить образцы из некоторых жаростойких сплавов.

Изобретение решает задачу приготовления эффективного катализатора получения синтез-газа автотермической конверсией углеводородного топлива.

Катализатор должен обладать следующими свойствами:

- высокой термостабильностью и окалиностойкостью;

- устойчивостью к коксообразованию;

- устойчивостью к дезактивации сернистыми соединениями, содержащимися в углеводородном топливе;

- теплопроводностью слоя катализатора на уровне 1-5 ватт/мК;

- возможностью использования катализатора в качестве структурных элементов конструкции реактора;

- низкой стоимостью;

- соответствием коэффициентов теплового расширения материала носителя и каталитически активного слоя;

- хорошей адгезией слоя катализатора и металлической поверхности.

Задача решается применением структурированных монолитных катализаторов на жаростойких сетчатых носителях со значительной продольной и радиальной теплопроводностью армированного металлопористого носителя, обладающего высокой теплопроводностью, развитой поверхностью, жаростойкостью, регулярностью структуры и механической прочностью.

В качестве носителя предлагается использовать жаростойкий армированный металлопористый носитель, изготовленный из сетчатых жаростойких сталей, на который наносят активные компоненты. Такая технология обеспечивает механическую прочность, теплопроводность, регулярность и однородность структуры.

При этом появляется возможность путем выбора химического состава носителя обеспечить оптимальные характеристики для каждого конкретного применения.

Таким образом, задача решается разработкой катализатора для получения синтез-газа посредством автотермической конверсии углеводородного топлива, представляющего структурированный монолитный катализатор. Катализатор содержит оксид марганца, оксид бария и оксид кобальта, нанесенные на жаростойкий армированный металлопористый носитель, в качестве которого можно применять армированную фехралевую сетку, при содержании компонентов в катализаторе, мас.%: оксид кобальта - 7-12, оксид марганца и оксид бария - 10-15 (отношение Ва/Mn=5/4), жаростойкий армированный металлопористый носитель - остальное до 100.

По данным просвечивающей электронной микроскопии в каталитическом слое, отделенном от армирующей сетки, преобладает фракция частиц в виде крупноблочных агломератов с размерами в несколько микрон и размерами первичных частиц 100-200 нм. Размеры отдельно встречающихся частиц достигают 1 мкм. Спектры ренгено-спектрального анализа показывают, что в составе этих частиц преобладают элементы: Fe, Co и Mn, относительное содержание которых неодинаково для разных частиц. Кроме этого, для частиц этого вида обнаруживаются примесные элементы: Al, Cr, Ti, Mg, Si, K, а также - S, Cl. Можно предположить, что наблюдаемые частички могли образоваться в результате взаимодействия нанесенных компонентов (Mn, Со) с поверхностью армирующего носителя.

Носитель может быть выполнен из материала Х23Ю5Т, имеющего следующий химический состав, мас.%: С - 0.05, Si - 0.5, Mn - 0.3, Cr - 22-24, Ni - 0.6, Ti - 0.2-0.5, S - 0.015, P - 0.030, Al -5.0-5.8, Fe - основной.

Жаростойкий армированный металлопористый носитель представляет собой сетчатый материал промышленного производства.

Задача решается также способом приготовления катализатора, который включает последовательность выполнения операций по усовершенствованной технологии:

1. Зачистка и отжиг армирующей сетки проводят при 600°С с тем, чтобы удалить защитное покрытие и улучшить формовочные свойства.

2. Приготовление раствора с заданным соотношением активных компонентов включает в себя растворение в воде солей бария, марганца и кобальта.

3. Осаждение активного компонента. Приготовленный носитель несколько раз пропитывают в водном растворе солей с заданным соотношением активных компонентов до тех пор, пока масса катализатора не увеличится на 10-15 мас.%. После каждого процесса пропитки образец на короткий период нагревают до 600-650°С.

4. Термообработку проводят в течение 4-5 ч. Температура термообработки зависит от термостойкости активного компонента.

5. Нарезание лент армированного катализатора заданной ширины. Ленты гофрируют с помощью специально разработанных гофропрессов.

7. Приготовление катализаторов регулярной структуры.

На монолитный металлопористый катализатор на основе фехралевой сетки (77-79 мас.%) наносят соли бария и марганца при соотношении Ва/Mn=5/4, пока масса катализатора не увеличится на 10-15 мас.%, и прокаливают при 600-650°С. Приготовленный таким образом армированный носитель пропитывают водным раствором соли кобальта (7-12 мас.%) и проводят термообработку при 600-650°С.

Жаростойкий металлопористый носитель может быть выполнен из фехралевой проволоки Х23Ю5Т, Мегапир 200, ЕврофехральGST, ЕврофехральGS 23-5, ЕврофехральGS SY.

Блочный катализатор представлял собой монолит, образующийся из плоских и гофрированных газопроницаемых лент катализатора. Таким образом, образуется пористая структура, состоящая из крупных транспортных пор - каналов (за счет гофр) и мелких пор (за счет пористости сетки). Это создает благоприятные условия для протекания высокоинтенсивных каталитических процессов, каковым является автотермическая конверсия дизельного топлива, бензина в области высоких температур. Размеры блочного катализатора зависят от условия протекания процесса.

Задача решается также способом получения синтез-газа автотермической конверсии реального дизельного топлива, бензина при температуре 800-950°С в присутствии вышеуказанного катализатора.

Полученный катализатор характеризуется высокой теплопроводностью и активностью в реакции автотермической конверсии реального дизельного топлива, бензина при температуре смеси на входе в реактор 300-400°С. На основании проведенных экспериментов уточнены оптимальные условия проведения процесса автотермической конверсии дизельного топлива, бензина. Они сводятся к следующему: O2/С=0.5-0.6, Н2О/С=1.5-1.7, время контакта 0.3-0.4 с, температура смеси на входе в реактор 300-400°С. При этих условиях в продуктах реакции содержатся: Н2=32%, CH4=1%, СО2=12%, СО=11%, N2=44% (даны концентрации в сухой смеси); выход синтез газа составляет 2.88 нл на грамм дизельного топлива, выход водорода - 18 моль на моль дизельного топлива.

Отличительными признаками предлагаемого катализатора являются:

1. Состав катализатора, содержащий мас.%: оксид кобальта - 7-12, оксид марганца и оксид бария - 10-15 (Ва/Mn=5/4), жаростойкий армированный металлопористый носитель - остальное до 100.

Введение в состав катализатора оксида бария способствует устойчивости катализатора к зауглероживанию, увеличению длительности стабильной работы; использование в качестве носителя жаростойкого армированного металлопористого носителя увеличивает теплопроводность катализатора, а также делает возможным изготовление структурированного (блочного) катализатора.

2. Армированный жаростойкий металлопористый носитель, например, выполненный из фехралевой проволоки Х23Ю5Т.

Катализатор устойчив к коксообразованию (проведение процесса в течение 100 ч не приводит к заметному коксообразованию), обеспечивает соотношение H2/СО в продуктах автотермической конверсии на уровне 2-3 и обеспечивает длительный ресурс работы без существенной дезактивации сернистыми соединениями, содержащимися в реальном дизельном топливе, бензине.

При этом при проведении процесса автотермической конверсии дизельного топлива при оптимальных условиях: О2/С=0.5-0.6, Н2О/С=1.5-1.7, время контакта 0.3-0.4 сек, температура смеси на входе в реактор 300-400°С; в продуктах реакции содержатся: Н2=32%, CH4=1%, CO2=12%, СО=11%, N2=44% (даны концентрации в сухой смеси); выход синтез газа составляет 2.88 нл на грамм дизельного топлива, выход водорода - 18 моль на моль дизельного топлива.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Катализатор готовят следующим образом. На жаростойкий армированный металлопористый монолитный носитель на основе фехралевой сетки (79 мас.%) наносят водный раствор солей бария и марганца с соотношением Ва/Mn=5/4, пока масса катализатора не увеличится на 12 мас.%, и прокаливают его при 600-650°С. Затем приготовленный таким образом образец пропитывают водным раствором соли кобальта, пока масса катализатора не увеличится на 9 мас.%, и проводят термообработку при 600-650°С.

Катализатор в виде структурированного монолитного блока испытывают в реакции автотермической конверсии реального дизельного топлива. Расходы реагентов, выход продуктов реакции Н2 и СО в сухой смеси, температурный профиль катализатора приведены в таблице.

Пример 2.

Аналогичен примеру 1. Отличие состоит в том, что на жаростойкий армированный металлопористый монолитный носитель на основе фехралевой сетки (78 мас.%) наносят водный раствор солей бария и марганца с соотношением Ва/Mn=5/4, пока масса катализатора не увеличится на 10 мас.%, и прокаливают его при 600-650°С. Затем приготовленный таким образом образец пропитывают водным раствором соли кобальта, пока масса катализатора не увеличится на 12 мас.%, и проводят термообработку при 600-650°С.

Катализатор в виде структурированного монолитного блока испытывают в реакции автотермической конверсии реального дизельного топлива. Расходы реагентов, выход продуктов реакции H2 и СО в сухой смеси, температурный профиль катализатора приведены в таблице.

Пример 3.

Аналогичен примеру 2. Отличие состоит в том, что на жаростойкий армированный металлопористый монолитный носитель на основе фехралевой сетки (78 мас.%) наносят водный раствор солей бария и марганца с соотношением Ва/Mn=5/4, пока масса катализатора не увеличится на 15 мас.%, и прокаливают его при 600-650°С. Затем приготовленный таким образом образец пропитывают водным раствором соли кобальта, пока масса катализатора не увеличится на 7 мас.%, и проводят термообработку при 600-650°С.

Катализатор в виде структурированного монолитного блока испытывают в реакции автотермической конверсии реального дизельного топлива. Расходы реагентов, выход продуктов реакции Н2 и СО в сухой смеси, температурный профиль катализатора приведены в таблице.

Пример 4.

Аналогичен примеру 1. Отличие состоит в том, что на жаростойкий армированный металлопористый монолитный носитель на основе фехралевой сетки (78 мас.%) наносят водный раствор солей бария и марганца с соотношением Ва/Mn=5/4, пока масса катализатора не увеличится на 15 мас.%, и прокаливают его при 600-650°С. Затем приготовленный таким образом образец пропитывают водным раствором соли кобальта, пока масса катализатора не увеличится на 7 мас.%, и проводят термообработку при 600-650°С.

Катализатор в виде структурированного монолитного блока испытывают в реакции автотермической конверсии бензина. Расходы реагентов, выход продуктов реакции Н2 и СО в сухой смеси, температурный профиль катализатора приведены в таблице.

Как видно из приведенных данных, предлагаемый катализатор позволяет осуществлять процесс автотермической конверсии дизельного топлива, бензина с целью получения синтез-газа с высокой активностью без коксообразования.

Таблица.
Результаты испытаний катализаторов автотермической конверсии дизельного топлива.
Пример, №O2(воздух), моль/с·102Дизельное топливо, г/сН2О, моль/с·102О2H2O/CT1, °СТ2, °СТ3, °СТ4, °СН2, %Н2/СО
10.170.040.550.531.730097787270132.03.62
20.170.040.520.541.635596685566530.23.53
30.170.050.530.531.640895485669527.63.29
10.240.070.560.511.238599888971929.62.3
20.240.061.020.522.231389388972829.43.26
30.280.061.020.62.228491993676627.83.43
• - CH1.89
Результаты испытаний катализатора автотермической конверсии бензина.
Пример, №О2 (воздух), моль/с·102Бензин, г/сН2O, моль/с·102О2H2O/CT1, °СТ2, °СТ3, °СТ4, °СН2, %Н2/СО
40.160.040.500.542.041097188471529.05.37
T1 - температура смеси на входе, Т2, Т3, Т4 - температурный профиль катализатора.

1.Катализаторполучениясинтез-газаавтотермическойконверсиейуглеводородноготоплива,включающийметаллопористыйносительиоксидыметаллов,отличающийсятем,чтовкачествеактивныхкомпонентовонсодержитоксидкобальт,оксидмарганцаиоксидбария,вкачественосителяонсодержитжаростойкийармированныйметаллопористыйноситель.12.Катализаторпоп.1,отличающийсятем,чтоонсодержитуказанныекомпонентывследующихколичествах,напримермас.%:оксидкобальта7-12%,оксидмарганца,оксидбария10-15%,присоотношенииВа/Mn=5/4,жаростойкийармированныйметаллопористыйноситель-остальноедо100%.23.Катализаторпоп.1или2,отличающийсятем,чтожаростойкийармированныйметаллопористыйносительможетбытьвыполненизфехралевойпроволокиХ23Ю5Т,имеющейследующийхимическийсостав,мас.%:С0,05,Si0,5,Mn0,3,Cr22-24,Ni0,6,Ti0,2-0,5,S0,015,P0,030,Al5,0-5,8,Fe-остальное.34.Способприготовлениякатализатораполучениясинтез-газаавтотермическойконверсиейуглеводородноготопливананесениемактивногокомпонентананоситель,отличающийсятем,чтокатализаторготовятпропиткойносителярастворомсолейбарияимарганцассоотношениемВа/Mn=5/4,сушкойипоследующейпрокалкойпри600-650°С,затемпроводятпропиткурастворомсоликобальтаспоследующейсушкойипрокаливаниемпри600-650°С,вкачественосителяиспользуютжаростойкийармированныйметаллопористыйноситель.45.Способпоп.4,отличающийсятем,чтожаростойкийармированныйметаллопористыйносительможетбытьвыполненизфехралевойпроволоки,имеющейследующийхимическийсостав,мас.%:С0,05,Si0,5,Mn0,3,Cr22-24,Ni0,6,Ti0,2-0,5,S0,015,P0,030,Al5,0-5,8,Fe-остальное.56.Способполучениясинтез-газаавтотермическойконверсиейуглеводородноготоплива,отличающийсятем,чтопроцесспроводятсиспользованиемкатализатораполюбомуизпп.1-3,илиприготовленномуполюбомуизпп.4-5.6
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
18.05.2019
№219.017.5623

Установка и способ термоударной обработки сыпучих материалов

Изобретение относится к области химической промышленности. Может найти применение во всех случаях, когда необходима термическая обработка сыпучих материалов в узком интервале температур: в производстве катализаторов, носителей, адсорбентов, осушителей, для проведения процессов сушки, охлаждения...
Тип: Изобретение
Номер охранного документа: 0002343970
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.87b3

Катализатор, способ его приготовления и способ получения бензойной кислоты

Изобретение относится к области органического синтеза, а именно к способу получения бензойной кислоты (СНСООН, бензолкарбоновая кислота) каталитическим окислением бензилового спирта раствором пероксида водорода, а также к катализаторам для его осуществления и способу их получения. Описан...
Тип: Изобретение
Номер охранного документа: 0002335341
Дата охранного документа: 10.10.2008
19.06.2019
№219.017.87ff

Наноструктурированный микропористый углеродный материал

Предложен материал, представляющий собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, с удельной поверхностью S=3170-3450 м/г, суммарным объемом пор V=1,77-2,97 см/г, объемом микропор V=1,48-1,87 см/г и характерным...
Тип: Изобретение
Номер охранного документа: 0002307704
Дата охранного документа: 10.10.2007
27.06.2019
№219.017.992a

Устройство для беспламенного сжигания сбросных газов

Изобретение может быть использовано для сжигания сбросных газов, в том числе высокого давления, в процессе добычи и переработки природного газа и нефти. Корпус горелочного устройства, установленного на газоподводящем стволе, выполнен коническим с расширением вверху, в корпусе дополнительно...
Тип: Изобретение
Номер охранного документа: 0002266469
Дата охранного документа: 20.12.2005
27.06.2019
№219.017.992c

Способ получения дизельного топлива

Изобретение относится к каталитическим способам получения малосернистых дизельных топлив из углеводородного сырья с высоким содержанием серы. Описан способ получения дизельного топлива, заключающийся в превращении прямогонного дизельного топлива с высоким содержанием серы в присутствии...
Тип: Изобретение
Номер охранного документа: 0002312886
Дата охранного документа: 20.12.2007
27.06.2019
№219.017.9930

Способ приготовления катализатора и способ очистки газовых смесей от оксида углерода

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного...
Тип: Изобретение
Номер охранного документа: 0002381064
Дата охранного документа: 10.02.2010
27.06.2019
№219.017.9931

Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации животных жиров, растительных масел, эфиров жирных кислот, свободных жирных кислот и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородсодержащих алифатических...
Тип: Изобретение
Номер охранного документа: 0002356629
Дата охранного документа: 27.05.2009
27.06.2019
№219.017.9932

Способ регулирования дисперсности углеродметаллических катализаторов (варианты)

Изобретение относится к области приготовления нанесенных на пористый углерод металлических катализаторов с управляемой дисперсностью частиц активного компонента, эффективных при осуществлении структурно-чувствительных реакций. Описан способ регулирования дисперсности катализатора, включающего...
Тип: Изобретение
Номер охранного документа: 0002374172
Дата охранного документа: 27.11.2009
27.06.2019
№219.017.9934

Катализатор, способ его получения и процесс дегидрирования c-c-парафиновых углеводородов в олефины

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С-С углеводородов и может найти применение в химической и нефтехимической промышленности. Описан катализатор дегидрирования С-С-парафиновых углеводородов в олефины,...
Тип: Изобретение
Номер охранного документа: 0002322290
Дата охранного документа: 20.04.2008
27.06.2019
№219.017.9936

Хроматографическая капиллярная колонка открытого типа со структурированным сорбентом

В хроматографической капиллярной колонке открытого типа, состоящей из капилляра, на внутреннюю поверхность которого равномерно по длине колонки нанесен слой удерживающего вещества, который выполнен в виде неразрывной пленки с регулярной пористой структурой со средним диаметром в диапазоне 2-30...
Тип: Изобретение
Номер охранного документа: 0002324175
Дата охранного документа: 10.05.2008
Показаны записи 11-20 из 31.
05.09.2018
№218.016.8305

Способ приготовления катализатора для конверсии углеводородных топлив в синтез-газ и процесс конверсии с применением этого катализатора

Изобретение относится к катализаторам, способам их приготовления и применения в процессах конверсии различных видов углеводородных топлив, таких как природный газ, дизельное топливо, сжиженный углеводородный газ (СУГ), в синтез-газ. Описан способ приготовления катализатора конверсии...
Тип: Изобретение
Номер охранного документа: 0002665711
Дата охранного документа: 04.09.2018
24.01.2019
№219.016.b377

Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира (ДМЭ). Описано применение медьсодержащей системы, нанесенной на оксид алюминия, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением...
Тип: Изобретение
Номер охранного документа: 0002677875
Дата охранного документа: 22.01.2019
01.03.2019
№219.016.ca01

Способ приготовления нанесенных полиметаллических катализаторов (варианты)

Изобретение относится к способам получения катализаторов окисления на любых твердых носителях нанесением на них твердых растворов металлов. Катализаторы могут быть использованы в различных областях катализа, например, для проведения фотокаталитических, электрокаталитических, каталитических и...
Тип: Изобретение
Номер охранного документа: 0002294240
Дата охранного документа: 27.02.2007
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
19.04.2019
№219.017.2bc5

Способ конверсии аммиака

Изобретение относится к процессам конверсии аммиака на двухступенчатой каталитической системе и может найти применение в производстве азотной и синильной кислот, а также гидроксиламинсульфата. Описан способ каталитической конверсии аммиака, заключающийся в пропускании газовой аммиак- и...
Тип: Изобретение
Номер охранного документа: 0002276098
Дата охранного документа: 10.05.2006
29.04.2019
№219.017.41c3

Способ очистки водородсодержащих газовых смесей от оксида углерода (варианты)

Изобретение может быть использовано для очистки от оксида углерода обогащенных водородом газовых смесей. Процесс проводят в две стадии при температуре не ниже 90°С и давлении не ниже 1 атм. Очистку в первой из стадий проводят путем селективного окисления оксида углерода кислородом и/или...
Тип: Изобретение
Номер охранного документа: 0002359741
Дата охранного документа: 27.06.2009
29.04.2019
№219.017.43ac

Способ активирования алюминия и устройство для его реализации

Изобретение относится к области химической технологии неорганических материалов. Способ активирования алюминия включает погружение образца алюминия в галламу в интервале температур плавления галламы и/или алюминия в присутствии ультразвуковых колебаний. Устройство для активирования алюминия...
Тип: Изобретение
Номер охранного документа: 0002414424
Дата охранного документа: 20.03.2011
26.05.2019
№219.017.615c

Способ моделирования процесса удаления космического мусора

Изобретение относится к космической технике. В способе моделирования процесса удаления космического мусора используют данные по конструкции реального объекта космического мусора (ОКМ), а именно реального нефункционирующего космического аппарата (КА) определенного типа, подлежащего удалению с...
Тип: Изобретение
Номер охранного документа: 0002689088
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.6873

Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив

Изобретение относится к катализаторам паровой конверсии синтетических топлив. Описан катализатор получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, характеризующийся тем, что он представляет собой каталитический структурированный блок с...
Тип: Изобретение
Номер охранного документа: 0002455068
Дата охранного документа: 10.07.2012
29.05.2019
№219.017.69a0

Устройство предпускового подогрева двигателя, автономного отопления, генерации водородсодержащего газа и способ работы устройства

Изобретения относятся к области машиностроения, а именно к предпусковому подогревателю двигателя и способу работы указанного устройства. Предпусковой подогреватель двигателя, автономного отопления, генерации водородсодержащего газа состоит из системы запуска, конвертора, теплообменника, системы...
Тип: Изобретение
Номер охранного документа: 0002440507
Дата охранного документа: 20.01.2012
+ добавить свой РИД