×
30.03.2019
219.016.f8ef

Результат интеллектуальной деятельности: Способ диагностики светлоклеточного почечно-клеточного рака и способ прогнозирования метастазирования на основе группы генов микроРНК

Вид РИД

Изобретение

Аннотация: Предложенная группа изобретений относится к области биомедицины, в частности молекулярной и клинической онкологии. Предложен способ диагностики светлоклеточного почечно-клеточного рака (скПКР), при котором у обследуемых лиц берут образцы ткани почки, производят выделение и очистку ДНК из взятых образцов и производят методом МС-ПЦР анализ метилирования фрагментов ДНК с применением праймеров. Диагностируют скПКР по наличию гиперметилирования по крайней мере у двух маркеров из группы генов MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c. Предложен способ прогнозирования метастазирования скПКР, при котором у обследуемых лиц выполняют диагностику скПКР в соответствии с вышеуказанным способом, и для лиц с установленным диагнозом скПКР производят анализ метилирования фрагментов ДНК методом МС-ПЦР. Прогнозируют метастазирования скПКР по наличию гиперметилирования по крайней мере у трех маркеров из группы генов MIR-125b-1, MIR-375, MIR-107, MIR-1258 и MIR-203. Заявляемые способы позволяют диагностировать скПКР и прогнозировать его метастазирование с высокой специфичностью и чувствительностью. 2 н. и 8 з.п. ф-лы, 2 ил., 4 табл., 3 пр.

Заявляемая группа изобретение относится к области биомедицины, в частности молекулярной и клинической онкологии, и касается способа диагностики светлоклеточного почечно-клеточного рака (скПКР) путем оценки статуса метилирования группы из 7 генов, а также способа прогнозирования метастазирования скПКР путем оценки статуса метилирования группы из 5.

У 70-80% больных раком почки диагностируют скПКР, который характеризуется наиболее высоким уровнем смертности среди урогенитальных видов рака. Более 35% случаев скПКР обнаруживается уже на поздних стадиях с наличием метастазирования, которое снижает показатели 5-летней выживаемости до 9% [1].

Показано, что доля генов микроРНК, регулируемых метилированием, в несколько раз выше, чем генов, кодирующих белки [2]. Однако в качестве биомаркеров используют чаще профили метилирования белок-кодирующих генов, а также профили экспрессии микроРНК, хотя для их определения требуется анализ препаратов РНК, в то время как анализ метилирования, в том числе генов микроРНК, осуществляется на препаратах ДНК, что более доступно, особенно в условиях лабораторий при клиниках.

Анализ метилирования более 20 генов микроРНК в образцах ДНК скПКР позволил нам идентифицировать более 10 новых гиперметилируемых при скПКР генов микроРНК, с использованием которых составлены группы маркеров для диагностики скПКР и прогноза метастазирования.

Отбор генов микроРНК, связанных с развитием опухолей и ассоциированных с CpG-островками, проводили с привлечением алгоритмов, содержащихся в базе данных miRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.html), и CpGcluster (http://bioinfo2.ugr.es/CpGcluster/). Оптимальные системы маркеров выбирали по результатам анализа ROC (Receiver Operating Characteristic curve)-кривых (характеристических кривых), проведенного с помощью ресурса http://www.biosoft.hacettepe.edu.tr/easyROC/, который позволил вычислить диагностические и прогностические параметры разных наборов маркеров: площадь под ROC-кривой (AUC, area under curve), оптимальный критерий отсечения, чувствительность и специфичность.

Оценка статуса метилирования 7 генов (MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c) в 70 образцах скПКР и в 19 образцах почки от пост-мортальных лиц без онкопатологии в анамнезе позволила на их основе определить группу маркеров для диагностики этого заболевания (панель 1). Оценка статуса метилирования 5 генов (MIR-125b-1, MIR-375, MIR-107, MIR-1258, MIR-203) в 20 образцах метастазирующего и 50 образцах неметастазирующего скПКР позволила определить группу маркеров для прогнозирования метастазирования (панель 2). В источниках информации не обнаружено сведений о выявлении гиперметилирования для 8 из 9 использованных генов при скПКР; ранее имелось только сообщение о гиперметилировании при скПКР гена MIR-34b/c [3]. Данные по гиперметилированию при скПКР 8 генов (MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-107, MIR-1258 и MIR-203) сообщены впервые в этом документе.

В источниках информации не обнаружено способов диагностики или прогноза метастазирования скПКР на основе анализа статуса метилирования генов микроРНК.

Ранее в Европейской патентной базе (CN105408494 (A) ― 2016-03-16) описан способ оценки риска плохого прогноза для выживаемости пациентов с почечно-клеточным раком на основе анализа метилирования группы белок-кодирующих генов (FAM150A, GRM6, ZNF540, ZFP42, ZNF154, RIMS4 и др.) [4]. В данном документе не рассмотрен способ диагностики скПКР и способ прогнозирования метастазирования, что необходимо для коррекции лечения.

В Европейской патентной базе (CN105779640 (A) ― 2016-07-20) [5] описан способ диагностики скПКР, основанный на анализе изменений уровня экспрессии 5 генов микроРНК в образцах РНК. Характеристики системы не приведены. Связь с метастазированием не рассмотрена.

В качестве ближайшего аналога рассматривается публикация [6 - прототип], в которой предложен способ ранней диагностики рака почки, основанный на анализе изменений уровня экспрессии 5 генов микроРНК (miR-193a-3p, miR-362, miR-572, miR-28-5p, miR-378). Данный способ характеризуется чувствительностью 80%, специфичностью 71% и величиной AUC 0.807. Связь с метастазированием не рассмотрена.

Техническая проблема, разрешаемая созданием заявляемой группой изобретений – расширить арсенал клинически удобных, требующих очень малого количества (не более 100 нг) ДНК, что дает возможность использовать их для анализа метилирования ДНК в образцах малого размера, и эффективных способов диагностики и прогнозирования метастазирования светлоклеточного почечно-клеточного рака на основе группы генов микроРНК, а именно создание способа диагностики светлоклеточного почечно-клеточного рака (скПКР) на основе разработанной панели (группы) «1» из 7 генов микроРНК (MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c) путем выявления гиперметилирования, по крайней мере, у двух генов из этой группы; а также создания способа прогнозирования метастазирования светлоклеточного почечно-клеточного рака (скПКР) на основе разработанной панели (группы) «2» из 5 генов микроРНК (MIR-125b-1, MIR-375, MIR-107, MIR-1258, MIR-203) путем выявления гиперметилирования, у каких-либо трех генов из этой группы.

Технический результат при использовании каждого способа заявляемой группы изобретений, связанных единым изобретательским замыслом, обеспечивающий решение указанной проблемы заключается в повышении достоверности результатов, упрощении технологии, сокращении длительности процедур и, тем самым, в увеличении производительности исследований.

При этом выявление метилирования (гиперметилирования), по крайней мере, 2-х генов из группы (панели) 1 в предположительно пораженной раком ткани человека, по сравнению со здоровой тканью почки служит диагностическим признаком скПКР. Для прогноза метастазирования требуется выявление метилирования (гиперметилирования), по крайней мере, 3-х генов из группы (панели) 2 в пораженной раком ткани человека. Заявленный способ диагностики скПКР позволяет на основе группы генов микроРНК (панель 1) с высокой специфичностью и чувствительностью диагностировать скПКР. Заявленный способ прогнозирования метастазирования скПКР позволяет на основе группы генов микроРНК (панель 2) с высокой специфичностью и чувствительностью прогнозировать наличие метастазов в лимфатических узлах и/или других тканях пациента, что важно для коррекции лечения.

На фиг.1 графически изображены результаты анализа характеристических или ROC-кривых оптимальной группы маркеров для диагностики светлоклеточного почечно-клеточного рака (Панель 1). Примечания: *ДИ – доверительный интервал. Площадь под кривой (area under curve) составляет: AUC = 0,939. При оптимальном критерии отсечения (критерий отсечения >0) – достаточно выявления метилирования 1 маркера из 7 (первая строка сверху), чувствительность составила 90%, специфичность - 90%. Для усиления специфичности задана необходимость выявления метилирования минимум 2 маркеров из 7 - критерий отсечения >0,1429 (вторая строка сверху), чувствительность составила 79%, специфичность достигла 100%;

на фиг.2 графически изображены результаты анализа характеристических или ROC-кривых оптимальной группы маркеров для прогноза метастазирования светлоклеточного почечно-клеточного рака (панель 2). Площадь под кривой (area under curve) составляет: AUC=0,945. Приведены: оптимальный критерий отсечения (> 0,4) и значения чувствительности (75%) и специфичности (94%). Согласно критерию отсечения необходимо выявление метилирования минимум 3 маркеров из 5.

Сущность изобретения в части способа диагностики светлоклеточного почечно-клеточного рака состоит в том, что у обследуемых лиц берут образцы ткани почки, производят выделение и очистку ДНК из взятых образцов и производят методом МС-ПЦР анализ метилирования фрагментов ДНК с применением праймеров, специфичных как к метилированному, так и к неметилированному аллелю, и диагностируют скПКР по наличию гиперметилирования, по крайней мере, у двух маркеров из группы генов: MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c.

Предпочтительно, выделение и очистку ДНК из образцов ткани почки проводят методом фенол-хлороформенной экстракции.

Предпочтительно, перед проведением метилспецифичной ПЦР (МС-ПЦР) определяют качество и точную концентрацию ДНК спектрофотометрически по соотношению оптической плотности при длинах волн 260 и 280 нм, а также проводят бисульфитную конверсию ДНК.

Предпочтительно, продукты, полученные методом МС-ПЦР, представляющие собой фрагменты ДНК, разделяют электрофорезом в 2% агарозном геле, либо в 10% полиакриламидном геле (при длине продукта ПЦР менее 160 п.н. (пар нуклеотидов)). и проверяют отсутствие продукта при проведении МС-ПЦР с каждой парой из указанной группы праймеров на неконвертированной ДНК.

Предпочтительно, в качестве контролей для неметилированных аллелей используют коммерческий препарат ДНК #G1471 (Promega, США), (www.promega.com/products/ ) причем в качестве позитивного контроля 100%-ого метилирования используют коммерческий препарат ДНК #SD1131 (Thermo Fisher Scientific, США), (https://www.thermofisher.com/us/en/home.html).

Сущность изобретения в части способа прогнозирования метастазирования светлоклеточного почечно-клеточного рака состоит в том, что у обследуемых лиц берут образцы ткани почки, производят выделение и очистку ДНК из взятых образцов и производят методом МС-ПЦР анализ метилирования фрагментов ДНК с помощью праймеров, специфичных как к метилированному, так и к неметилированному аллелю, и считают подтвержденным прогноз метастазирования скПКР по наличию гиперметилирования, по крайней мере, у трёх маркеров из группы генов MIR-125b-1, MIR-375, MIR-107, MIR-1258 и MIR-203.

Предпочтительно, выделение и очистку ДНК из образцов ткани почки проводят методом фенол-хлороформенной экстракции.

Предпочтительно, перед проведением метилспецифичной ПЦР (МС-ПЦР) определяют качество и точную концентрацию ДНК спектрофотометрически по соотношению оптической плотности при длинах волн 260 и 280 нм, а также проводят бисульфитную конверсию ДНК. редпочтительно, продукты, полученные методом МС-ПЦР, представляющие собой фрагменты ДНК, разделяют электрофорезом в 2% агарозном геле, либо в 10% полиакриламидном геле (при длине продукта ПЦР менее 160 н.п.), и проверяют отсутствие продукта при проведении МС-ПЦР с каждой парой из указанной группы праймеров на неконвертированной ДНК.

Предпочтительно, в качестве контролей для неметилированных аллелей используют коммерческий препарат ДНК #G1471 (Promega, США), причем в качестве позитивного контроля 100%-ого метилирования используют коммерческий препарат ДНК #SD1131 (Thermo Fisher Scientific, США).

Диагностику скПКР осуществляют следующим образом:

Берут образцы ткани почки у лиц, обследуемых для выявления онкологического заболевания. Выделение и очистку ДНК из образцов ткани почки проводят методом фенол-хлороформенной экстракции. Качество и точную концентрацию ДНК определяют спектрофотометрически по соотношению оптической плотности при длинах волн 260 и 280 нм. Далее проводят бисульфитную конверсию ДНК с последующей метилспецифичной ПЦР (МС-ПЦР) [3]. Для анализа метилирования генов микроРНК методом МС-ПЦР используют две пары праймеров, специфичных как к метилированному, так и к неметилированному аллелю (Таблица 1).

Предварительно, для проверки пригодности праймеров и условий МС-ПЦР, выполняется проверка секвенированием, т.е. подтверждается, что с этими прймерами и выбранными условиями МС-ПЦР продукт соответствует сиквенсу.

Продукты МС-ПЦР, представляющие собой фрагменты ДНК, разделяют электрофорезом в 2% агарозном геле, либо в 10% полиакриламидном геле (при длине продукта ПЦР менее 160 н.п.). Проверяют отсутствие продукта при проведении МС-ПЦР с каждой парой праймеров на неконвертированной ДНК. В качестве контролей для неметилированных аллелей используют коммерческий препарат ДНК #G1471 (Promega, США). Метилирование - ковалентная модификация ДНК - осуществляется путем переноса метильной группы с S-аденозил метионина в 5-ю позицию пиримидинового кольца цитозина. Гиперметилированием называют аберрантное (аномальное) метилирование промоторных фрагментов супрессорных генов в опухолях при его отсутствии в парной гистологически нормальной ткани. В качестве позитивного контроля 100%-ого метилирования используют коммерческий препарат ДНК #SD1131 (Thermo Fisher Scientific, США). Соответствие фрагментов МС-ПЦР исследуемым генам проверяют прямым секвенированием обеих цепей продуктов МС-ПЦР.

Диагностику скПКР осуществляют по результатам выявления гиперметилирования маркеров из группы 7 генов (MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c). Диагноз наличия скПКР устанавливается по наличию гиперметилирования, по крайней мере, у двух маркеров из 7 указанных генов (панель 1).

Результаты, соответствующие фиг.1

Прогнозирование метастазирования скПКР осуществляют следующим образом:

Берут образцы ткани почки у лиц, обследуемых с установленным диагнозом. Выделение и очистку ДНК из образцов ткани почки проводят методом фенол-хлороформенной экстракции. Качество и точную концентрацию ДНК определяют спектрофотометрически по соотношению оптической плотности при длинах волн 260 и 280 нм. Далее проводят бисульфитную конверсию ДНК с последующей метилспецифичной ПЦР (МС-ПЦР) [3]. Для анализа метилирования генов микроРНК методом МС-ПЦР используют две пары праймеров, специфичных как к метилированному, так и к неметилированному аллелю (Таблица 1).

Примечания:

Праймеры подобраны авторами с использованием известных программ (Methyl Primer Express v.1.0, Vector NTI v.10.0 и др.). Условия МС-ПЦР (Тотж) подобраны экспериментально. п.н. – пары нуклеотидов.

Продукты МС-ПЦР, представляющие собой фрагменты ДНК, разделяют электрофорезом в 2% агарозном геле, либо в 10% полиакриламидном геле (при длине продукта ПЦР менее 160 н.п.). Проверяют отсутствие продукта при проведении МС-ПЦР с каждой парой праймеров на неконвертированной ДНК. В качестве контролей для неметилированных аллелей используют коммерческий препарат ДНК #G1471 (Promega, США). Метилирование - ковалентная модификация ДНК - осуществляется путем переноса метильной группы с S-аденозил метионина в 5-ю позицию пиримидинового кольца цитозина. Гиперметилированием называют аберрантное (аномальное) метилирование промоторных фрагментов супрессорных генов в опухолях при его отсутствии в парной гистологически нормальной ткани. В качестве позитивного контроля 100%-ого метилирования используют коммерческий препарат ДНК #SD1131 (Thermo Fisher Scientific, США). Соответствие фрагментов МС-ПЦР исследуемым генам проверяют прямым секвенированием обеих цепей продуктов МС-ПЦР.

Диагностику скПКР осуществляют по результатам выявления гиперметилирования маркеров из группы 5 генов (MIR-125b-1, MIR-375, MIR-107, MIR-1258, MIR-203). Диагноз наличия скПКР устанавливается по наличию гиперметилирования, по крайней мере, у трех маркеров из 5 указанных генов (панель 2).

Для того чтобы оценить диагностическую эффективность каждого из заявляемых способов используют характеристические кривые. Они отражают взаимную зависимость ложноположительных и истинно положительных результатов. Полное название таких кривых — «операционные характеристические кривые наблюдателя» - Receiver Operating Characteristic curve или, сокращенно, ROC-curve. Поэтому часто такие кривые называют ROC-кривыми, а выполняемые для их построения действия — ROC-анализом.

Характеристические кривые позволили количественно сопоставить диагностические эффективности различных наборов маркеров и выбрать наиболее оптимальные. С целью подбора оптимальных панелей маркеров по результатам обследования верифицированной группы больных и здоровых, данные, полученные для разных наборов генов (панелей маркеров), сводили в таблицы и по ним строили характеристические кривые — ROC-кривые. На фиг.1 и фиг.2. приведены ROC-кривые для оптимальных панелей маркеров (панель 1 и 2), для которых программа построила ROC-кривые с минимальным критерием отсечения и максимальной площадью под кривой (AUC).

Пример 1. Анализ метилирования генов микроРНК, используемых в заявляемых способах, в образцах опухолей и онкологически здоровых тканях почки.

Для диагностики скПКР отобраны 7 генов: MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c (панель 1), для прогноза метастазирования – 5 генов: MIR-125b-1, MIR-375, MIR-107, MIR-1258 и MIR-203 (панель 2), в сумме отобраны 9 маркерных генов: MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c, MIR-107 и MIR-203. Для этих 9 исследуемых генов микроРНК МС-ПЦР проводили в 20 мкл реакционной смеси, содержащей 67 мМ Трис-HCl, рН 8.8, 16,7 мМ (NH4)2SO4, 0.01% Tween-20; 1,5 мМ MgCl2, 0.25 мМ каждого dNTP; 10-20 нг ДНК; 25 пмолей каждого праймера; 0,5 ед. Hot Start Taq ДНК полимеразы («СибЭнзим», Новосибирск). Амплификацию проводили по программе: 95°С, 5 мин; 35 циклов {95°С, 10 c; Тотж (см. Табл. 1), 20 с; 72°С, 30с}; 72°С, 3 мин. ПЦР проводили на амплификаторe DNA Engine Dyad Cycler фирмы Bio-Rad (США). Праймеры, температура отжига и размер продуктов МС-ПЦР приведены в Таблице 1.

Для 70 пациентов с морфологически установленным диагнозом – светлоклеточный почечно-клеточный рак (скПКР) и 19 доноров (умерших от неонкологических заболеваний) проведен анализ метилирования маркеров композиции 1. Данные по клинико-гистологической характеристике образцов скПКР и по метилированию маркеров: MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c (панель 1) и MIR-125b-1, MIR-375, MIR-107, MIR-1258 и MIR-203 (панель 2) приведены в качестве примера для 14 образцов опухолей (Таблица 2). Данные по метилированию 7 маркеров для диагностики скПКР приведены также для 19 доноров в Таблице 3. Сопоставление данных по метилированию маркеров панели 1 в образцах опухолей и доноров позволило показать применимость способа диагностики скПКР на основе этой группы маркеров и его высокую чувствительность и строгую специфичностью (см. пример 2).

Пример 2. Оценка чувствительности и специфичности заявляемого способа диагностики скПКР на основе группы генов микроРНК.

Важным свойством способа диагностики скПКР на основе 7 генов микроРНК (MIR-132, MIR-125b-1, MIR-137, MIR-375, MIR-193a, MIR-1258, MIR-34b/c, панель 1) является высокая клиническая чувствительность и специфичность. Наличие метилирования, по крайней мере, у одного маркера панели 1 выявлено у 63 из 70 пациентов с скПКР и у 2-х из 19 доноров (умерших от неонкологических заболеваний). В соответствии с этими данными, клиническая чувствительность и специфичность диагностики скПКР, рассчитанная методом ROC-анализа, составили 90% и 90%, соответственно, AUC - 0,939 (см. Фиг. 1). Но для повышения специфичности, мы задали требование о выявлении метилирования минимум двух генов, тогда специфичность достигла 100%, а чувствительность составляет 79%, при той же величине AUC (см. Фиг. 1, таблица под ROC-кривой). Таким образом, заявляемым способом (по выявлению метилирования 2 из 7 маркеров) можно диагностировать скПКР у пациентов истинно больных данным онкологическим заболеванием с высокой (в 79% случаев) клинической чувствительностью и строго специфично (в 100% случаев) при высокой надёжности (AUC - 0,939, что выше 0,9).

Пример 3. Оценка чувствительности и специфичности заявляемого способа прогнозирования метастазирования скПКР.

В соответствии с данными по клинико-гистологической характеристике, 70 образцов скПКР разбили на две группы: без метастазирования – 50 образцов и с выявленным метастазированием в региональных лимфатических узлах или отдалённых органах – 20 образцов. В таблице 2 в качестве примеров приведены данные по метилированию для 7 образцов без метастазирования и для 7 образцов с метастазированием. С использованием комбинация 5 генов микроРНК (MIR-125b-1, MIR-375, MIR-107, MIR-1258, MIR-203, панель 2) удается различить уровень метилирования в этих двух группах и прогнозировать метастазирование у пациента с клинической чувствительностью 75% и специфичностью 94%, AUC - 0,945. Надёжность способа определена методом ROC-анализа, согласно которому для предсказания метастазирования необходимо установление метилирования 3 из 5 маркеров панели 2 (Фиг. 2).

Заявляемая группа способов диагностики и прогноза метастазирования скПКР характеризуется тем, что:

- они основаны на анализе метилирования генов микроРНК в образцах ДНК, что более доступно, особенно в условиях лабораторий при клиниках, чем анализ уровня микроРНК в образцах РНК, как в патенте (CN105779640 (A) ― 2016-07-20) и в публикации [6], взятой как ближайший аналог;

- способ диагностики на основе выявления метилирования не менее 2-х генов панели 1 характеризуется клинической чувствительностью 79%, специфичностью 100% и величиной AUC 0,939, что выше, чем по способу ближайшего аналога [6], который характеризуется чувствительностью 80%, специфичностью 71% и величиной AUC 0.807. Видно, что заявляемые способы обладают аналогичной чувствительностью, но значительно превосходит по специфичности и величине AUC. Кроме того, следует указать, что способ ближайшего аналога [6] основан на оценке содержания микроРНК, что относится к дорогостоящим методам в отличие от анализа метилирования генов микроРНК в образцах ДНК;

- заявляемый способ с использованием маркеров панели 2 позволяет прогнозировать наличие или развитие метастазов у пациентов скПКР с клинической чувствительностью 75% и специфичностью 94% (AUC - 0,945); в источниках информации не обнаружено аналогичных систем для прогнозирования метастазирования скПКР;

- заявляемый способ позволяет с применением одинаковых методологий одновременно проводить диагностику скПКР и прогнозирование метастазирования, что важно для коррекции лечения;

- кривые ROC – анализа (Receiver Operating Characteristic) позволяют подтвердить высокую информативность заявляемой группы изобретений.

Таблица 1. Характеристика праймеров, температуры отжига и продуктов МС-ПЦР 9 маркерных генов микроРНК.

Цитированные источники научно-технической информации:

Bedke J1. , Gauler T, Grünwald V, Hegele A, Herrmann E, Hinz S, Janssen J, Schmitz S, Schostak M, Tesch H, Zastrow S, Miller K. Systemic therapy in metastatic renal cell carcinoma. World J Urol. 2017, 35(2):179-188. doi: 10.1007/s00345-016-1868-5.

2. Vrba L., Muñoz-Rodríguez J.L., Stampfer M.R., Futscher B.W. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 2013, 8(1): e54398.

3. Береснева Е.В., Рыков С.В., Ходырев Д.С., Пронина И.В., Ермилова В.Д., Казубская Т.П., Брага Э.А., Логинов В.И. Профиль метилирования группы генов микроРНК при светлоклеточном почечноклеточном раке; связь с прогрессией рака. Генетика. 2013; 49(3): 366–375.

4. Европейская патентная база: CN105408494 (A) ― 2016-03-16. KANAI YAE; ARAI ERI; TIAN YING. Method for predicting prognosis of renal cell carcinoma.

5. Европейская патентная база: CN105779640 (A) ― 2016-07-20. CUI XUEJUN. MiRNA biomarker and detection kit used for renal cancer diagnosis.

Wang C6. ., Hu J., Lu M., Gu H., Zhou X., Chen X., Zen K., Zhang C.Y., Zhang T., Ge J., Wang J., Zhang C. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 2015; 5:7610. doi: 10.1038/srep07610.


Способ диагностики светлоклеточного почечно-клеточного рака и способ прогнозирования метастазирования на основе группы генов микроРНК
Способ диагностики светлоклеточного почечно-клеточного рака и способ прогнозирования метастазирования на основе группы генов микроРНК
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
25.08.2017
№217.015.cfd2

Композиция для восстановления дефектов костной ткани на основе аденовирусных конструкций, несущих кднк вмр-2, фибринового геля и синтетического β-трикальцийфосфата и способ ее получения

Изобретение относится к биохимии. Описана композиция на основе рекомбинантного аденовируса РПАН-ВМР2, фибринового геля и синтетического β-трикальцийфосфата в качестве костно-пластического материала. Предложен способ получения композиции, включающий следующие стадии: получение...
Тип: Изобретение
Номер охранного документа: 0002620962
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e0d7

Определение содержания gc-богатой последовательности генома (gc-днк) в составе циркулирующей внеклеточной днк плазмы периферической крови как способ определения уровня гибели клеток при беременности

Изобретение относится к области медицины и предназначено для определения наличия в организме беременных женщин хронического процесса, который сопровождается увеличенной гибелью клеток. В составе циркулирующей внеклеточной ДНК плазмы периферической крови определяют содержание GC-богатой...
Тип: Изобретение
Номер охранного документа: 0002625503
Дата охранного документа: 14.07.2017
13.02.2018
№218.016.1f9a

Способ дифференциальной и подтверждающей молекулярно-генетической диагностики врожденной аниридии и wagr-синдрома

Изобретение относится к биохимии. Описан способ дифференциальной и подтверждающей молекулярно-генетической диагностики врожденной аниридии и WAGR-синдрома. Способ предусматривает, что у пациента, имеющего клинические признаки аниридии, производят забор образца биологического материала для...
Тип: Изобретение
Номер охранного документа: 0002641254
Дата охранного документа: 16.01.2018
17.02.2018
№218.016.2dca

Способ диагностики светлоклеточного почечно-клеточного рака

Изобретение относится к области медицины и предназначено для диагностики светлоклеточного почечно-клеточного рака (скПКР). В качестве исследуемых образцов используют образцы ткани почки в предположительно опухолевой и гистологически нормальной ткани пациента. Проверяют наличие и качество РНК на...
Тип: Изобретение
Номер охранного документа: 0002643586
Дата охранного документа: 02.02.2018
31.05.2019
№219.017.717f

Способ анализа дифференциально метилированных геномных участков в биологических образцах костного мозга и крови детей с острым миелоидным лейкозом

Изобретение относится к области биотехнологии. Представлен способ выявления и анализа аномально метилированных геномных участков в биологических материалах пациентов с острым миелоидным лейкозом. Способ предусматривает выделение геномной ДНК, гидролиз выделенной ДНК метилчувствительной...
Тип: Изобретение
Номер охранного документа: 0002689727
Дата охранного документа: 28.05.2019
06.06.2019
№219.017.73d3

Способ получения ноотропной композиции на основе полипептидных комплексов, выделенных из нейронов и глиальных клеток, полученных методом направленной дифференцировки индуцированных плюрипотентных стволовых клеток человека

Изобретение относится к способу получения белково-пептидной композиции с ноотропными свойствами и включает в себя: забор биоптата кожи, получение культуры фибробластов, криоконсервацию культуры фибробластов, размораживание культуры фибробластов, репрограммирование фибробластов для получения...
Тип: Изобретение
Номер охранного документа: 0002690498
Дата охранного документа: 04.06.2019
08.06.2019
№219.017.7591

Ноотропная композиция на основе полипептидных комплексов, выделенных из нейронов и глиальных клеток, полученных методом направленной дифференцировки индуцированных плюрипотентных стволовых клеток человека

Изобретение представляет собой ноотропную белково-пептидную композицию на основе полипептидных комплексов, выделенных из нейронов и глиальных клеток, полученных методом направленной дифференцировки индуцированных плюрипотентных стволовых клеток человека, характеризующуюся тем, что в ее состав...
Тип: Изобретение
Номер охранного документа: 0002690846
Дата охранного документа: 06.06.2019
12.09.2019
№219.017.ca29

Способ прогнозирования выживаемости больных светлоклеточным почечно-клеточным раком

Изобретение относится к медицине, а именно к лабораторной диагностике, и позволяет прогнозировать выживаемость больных светлоклеточным почечно-клеточным раком (скПКР). Для этого получают образцы из опухолевой и нормальной тканей почки, выделяют из них мРНК, выполняют обратную транскрипцию мРНК...
Тип: Изобретение
Номер охранного документа: 0002699792
Дата охранного документа: 11.09.2019
Показаны записи 1-10 из 11.
20.02.2014
№216.012.a251

Система маркеров на основе группы генов микрорнк для диагностики немелкоклеточного рака легкого, включая плоскоклеточный рак и аденокарциному

Изобретение относится к области медицины, в частности молекулярной биологии и онкологии, и касается системы маркеров, представляющую собой группу генов микроРНК: miR-129-2, miR-125b1, miR-137 и miR-375, для диагностики немелкоклеточного рака легкого, включая плоскоклеточный рак и...
Тип: Изобретение
Номер охранного документа: 0002507268
Дата охранного документа: 20.02.2014
20.05.2014
№216.012.c574

Способ защиты маслонаполненного трансформатора от взрыва и маслонаполненный трансформатор с защитой от взрыва

Способ защиты маслонаполненного трансформатора от взрыва, заключающийся в том, что вводят элегаз в масло, заполняющее бак трансформатора, и перекачивают полученную смесь масла и элегаза из верхней части бака трансформатора в нижнюю через наружный трубопровод со скоростью, равной или превышающей...
Тип: Изобретение
Номер охранного документа: 0002516307
Дата охранного документа: 20.05.2014
20.05.2015
№216.013.4d0c

Способ индукции апоптоза клеток злокачественной опухоли колоректального рака и средство для его осуществления

Изобретение относится к биохимии. Описан способ индукции апоптоза клеток злокачественной опухоли колоректального рака. Производят ингибирование функции генов из группы: c-IAP2, Livin и MCM4. Для этого используют препараты малых интерферирующих миРНК-олигонуклеотидов из группы:...
Тип: Изобретение
Номер охранного документа: 0002551238
Дата охранного документа: 20.05.2015
17.02.2018
№218.016.2dca

Способ диагностики светлоклеточного почечно-клеточного рака

Изобретение относится к области медицины и предназначено для диагностики светлоклеточного почечно-клеточного рака (скПКР). В качестве исследуемых образцов используют образцы ткани почки в предположительно опухолевой и гистологически нормальной ткани пациента. Проверяют наличие и качество РНК на...
Тип: Изобретение
Номер охранного документа: 0002643586
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2f32

Композиция для ингибирования роста и стимуляции апоптоза клеток колоректального рака

Изобретение относится к биотехнологии, в частности к композиции для ингибирования роста и стимуляции апоптоза клеток злокачественной опухоли колоректального рака путем блокирования функции генов МСМ4 и Livin. Указанная композиция содержит липосому для доставки композиции в клетки-мишени и...
Тип: Изобретение
Номер охранного документа: 0002644675
Дата охранного документа: 13.02.2018
14.09.2018
№218.016.87ff

Способ для прогнозирования метастазирования рака яичников на основе группы генов микрорнк

Изобретение относится к области биотехнологии, в частности молекулярной биологии и онкологии. Описан способ для прогнозирования метастазирования рака яичников на основе группы генов микроРНК путем выявления метилирования по крайней мере трех маркеров из пяти, способ отличается тем, что...
Тип: Изобретение
Номер охранного документа: 0002666911
Дата охранного документа: 13.09.2018
12.08.2019
№219.017.be61

Способ количественной оценки реабилитационного потенциала у пациентов после коронарного шунтирования на ii этапе кардиологической реабилитации

Изобретение относится к медицине и может быть использовано для определения реабилитационного потенциала (РП) у пациентов кардиологического профиля. Определяют совокупность 11-ти показателей пациента: возраст, индекс массы тела (ИМТ, кг/м), уровень гемоглобина, приверженность рекомендациям...
Тип: Изобретение
Номер охранного документа: 0002696763
Дата охранного документа: 05.08.2019
12.09.2019
№219.017.ca29

Способ прогнозирования выживаемости больных светлоклеточным почечно-клеточным раком

Изобретение относится к медицине, а именно к лабораторной диагностике, и позволяет прогнозировать выживаемость больных светлоклеточным почечно-клеточным раком (скПКР). Для этого получают образцы из опухолевой и нормальной тканей почки, выделяют из них мРНК, выполняют обратную транскрипцию мРНК...
Тип: Изобретение
Номер охранного документа: 0002699792
Дата охранного документа: 11.09.2019
18.10.2019
№219.017.d7fe

Способ для диагностики рака яичников на основе группы генов микрорнк

Изобретение относится к биотехнологии, в частности молекулярной биологии и онкологии. Описан способ для диагностики рака яичников на основе группы генов микроРНК путем выявления метилирования по крайней мере одного маркера из четырех, отличающийся тем, что маркерами системы являются гены:...
Тип: Изобретение
Номер охранного документа: 0002703399
Дата охранного документа: 16.10.2019
24.05.2023
№223.018.6fac

Способ для диагностирования рака молочной железы на основе набора генов длинных некодирующих рнк

Изобретение относится к области биотехнологии, медицины, в частности молекулярной и клинической онкологии. Представлен способ диагностирования рака молочной железы на основе группы генов длинных некодирующих РНК путем выявления метилирования маркеров-генов: HAND2-AS1, KCNK15-AS1 и PLUT....
Тип: Изобретение
Номер охранного документа: 0002795976
Дата охранного документа: 15.05.2023
+ добавить свой РИД