×
29.03.2019
219.016.ee8e

Результат интеллектуальной деятельности: Способ определения параметров теплового комфорта в помещениях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области промышленной экологии и может быть использовано для расчета параметров теплового комфорта помещений различного назначения. Способ оценки теплового комфорта в помещениях заключается в определении параметров теплового комфорта, которые учитывают комфортные микроклиматические параметры и личностные параметры, включающие метаболизм и характеристику одежды, для этого предварительно для каждого класса помещений определяют изокомфортные микроклиматические параметры, соответствующие заданному уровню теплового комфорта, после чего рассчитывают эквивалентную комфортную температуру, затем полученные значения эквивалентной комфортной температуры аппроксимируют в виде расчетных выражений для каждого класса помещений по следующей шкале: Технический результат – повышение информативности получаемых данных за счет получения обобщающего параметра для оценки теплового комфорта в помещениях различного назначения. 1 ил., 3 табл.

Изобретение относится к области промышленной экологии и может быть использовано для расчета уровня теплового комфорта помещений различного назначения.

Известен способ оценки комфортности рабочей зоны по параметрам микроклимата (патент РФ №2509322, МПК G01W 1/02, дата приоритета 16.08.2012, опубликовано 10.03.2014), в котором на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения, а также температуры окружающих поверхностей в рабочей зоне - рассчитывают степень комфортности по определенной формуле.

Известен способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий микроклимата (патент РФ №2636807, МПК G05D 23/19, дата приоритета 29.06.2016, опубликовано 28.11.2016), в котором по данным предварительных измерений определяют коэффициент комфортности теплового состояния человека, коэффициент радиационного охлаждения, коэффициент асимметрии радиационных потоков, коэффициент качества воздушной среды и вычисляют уровень комфортности микроклимата по определенной формуле.

Известен способ определения уровня теплового комфорта по ГОСТ Р ИСО 7730, в соответствии с которым уровень теплового комфорта задается для помещений разных классов комфортности согласно показателю PMV (Predicted Mean Vote - прогнозируемая средняя оценка качества воздушной среды) и соответствующим ему показателем PPD (Predicted Percentage Dissatisfied - прогнозируемый процент недовольных параметрами среды).

Помещения класса комфортности А: -0,2<PMV<+0,2 (PPD<6%)
Помещения класса комфортности В: -0,5<PMV<+0,5 (PPD<10%)
Помещения класса комфортности С: -0,7<PMV<+0,7 (PPD<15%).

Показатели PMV и PPD рассчитывают в соответствии с известной методикой О. Фангера, реализованной в международном стандарте (см. ГОСТ Р ИСО 7730-2009 «Аналитическое определение и интерпретация комфортности теплового режима с использованием расчета показателей PMV и PPD и критериев локального теплового комфорта») как функция от четырех параметров микроклимата (температуры, влажности и подвижности воздуха, а также средней радиационной температуры) и двух личностных параметров (скорости метаболизма и теплоизоляционных характеристик одежды). Недостатком данных известных способов является то, что в них предусмотрена только оценка уровня теплового комфорта по известным микроклиматическим и личностным параметрам. Однако в практике проектирования систем жизнеобеспечения часто возникает обратная задача определения требуемых параметров, обеспечивающих заданный уровень теплового комфорта, что не обеспечивается известными способами.

Известен также способ построения таблиц изокомфортных параметров (Сулин А.Б., Рябова Т.В., Иванов С.В., Поддубный Р.А. Расчетное обоснование параметров микроклимата с заданным уровнем теплового комфорта // Холодильная техника - 2017. - №4. - С. 37-41). Известный способ базируется на решении обратной задачи, а именно на расчете совокупности параметров микроклимата при заданных личностных параметрах и заданном уровне теплового комфорта помещения. Вычисленные значения параметров микроклимата, обеспечивающих заданный уровень теплового комфорта, сведены в таблицы, названные таблицами изокомфортных параметров. Недостаток этого известного способа заключается в том, что он предполагает применение большого количества таблиц изокомфортных параметров, рассчитанных для различных уровней метаболизма, характеристик одежды и классов помещений, что затрудняет практическое применение, так как отсутствует единый обобщающий критерий.

Наиболее близким по технической сущности решением и принятый за прототип является способ определения эквивалентных температур по определенному уравнению, изложенный в работе (Madsen Т, Olesen В & Kristensen N (1984) Comparison between operative and equivalent temperature under typical indoor conditions. ASHRAE Transactions, ashrae.org, vol 90, part 1, pp 1077-1090), который включает использование уравнения для расчета эквивалентной температуры:

где teq - эквивалентная температура, °С; ta - температура воздуха, °С; - средняя радиационная температура, °С, νa - скорость воздуха, м/с; Icl - термическое сопротивление одежды, clo. Этот способ базируется на эмпирически полученном уравнении для эквивалентной температуры (параметра, соответствующего одинаковым теплоощущениям), которое представляет собой функцию температуры воздуха, средней радиационной температуры, подвижности, и характеристик одежды. Недостаток этого известного способа заключается в том, что получаемый параметр эквивалентной температуры характеризует только эквивалентные теплоощущения при заданном наборе микроклиматических и личностных параметров и не учитывает требуемый уровень теплового комфорта.

Решается задача получения обобщающего параметра для эквивалентной комфортной температуры, соответствующей требуемому уровню теплового комфорта в помещении.

Способ оценки теплового комфорта в помещениях заключается в определении параметров теплового комфорта, которые учитывают комфортные микроклиматические параметры и личностные параметры, включающие метаболизм и характеристику одежды, для этого предварительно для каждого класса помещений определяют изокомфортные микроклиматические параметры, соответствующие заданному уровню теплового комфорта, после чего рассчитывают эквивалентную комфортную температуру по формуле:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo, затем полученные значения эквивалентной комфортной температуры аппроксимируют в виде расчетных выражений для каждого класса помещений по следующей шкале:

В заявляемом способе оценки теплового комфорта, рассчитывают эквивалентную комфортную температуру по формуле:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo.

Для каждого класса помещений предварительно строят таблицы изокомфортных микроклиматических параметров, которые рассчитывают для различных уровней метаболизма и характеристик одежды.

Таблицы изокомфортных параметров для помещений класса В представлены на чертеже. Затем полученные значения из таблиц изокомфортных микроклиматических параметров подставляют в уравнение для расчета эквивалентной температуры и получают результаты в виде эквивалентной комфортной температуры.

Например, для помещений класса В:

Затем полученные значения эквивалентной комфортной температуры аппроксимируют в функции от личностных параметров (уровня метаболизма и характеристик одежды), в результате получают обобщающие расчетные выражения параметра эквивалентной комфортной температуры, соответствующей требуемому уровню теплового комфорта в помещении каждого класса.

Например, для помещений класса В:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo,

для PMV=-0,49 teqc=53,60*0,58met*0,70clo.

Таким образом, шесть массивов данных с параметрами теплового комфорта для помещений классов А, В и С обобщают шестью расчетными алгебраическими выражениями.

Заявителем не выявлены технические решения, тождественные заявляемому изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Заявляемый способ осуществляется следующим образом.

Для данного класса помещений по уровню комфортности, например, для помещений класса В, в соответствии с ГОСТ Р ИСО 7730 должно быть обеспечено значение показателя PMV в пределах -0,5<PMV<+0,5. Задаваясь значением метаболизма и термическим сопротивлением одежды, например, 1,1 met и 1 clo, строят таблицу изокомфортных микроклиматических параметров в виде зависимостей температуры воздуха от подвижности воздуха и средней радиационной разности температур, соответствующих заданному уровню теплового комфорта PMV=+0,49 и PMV=-0,49.

Полученные значения изокомфортных параметров (температура воздуха, подвижность воздуха, средняя радиационная температура) для заданного уровня метаболизма и термического сопротивления одежды подставляют в формулу эквивалентной температуры:

и рассчитывают эквивалентную комфортную температуру:

где: teqc - эквивалентная комфортная температура, °С; tac - температура воздуха комфортная, °С; - средняя радиационная температура комфортная, °С, - скорость воздуха комфортная, м/с; Icl - термическое сопротивление одежды, clo.

В результате получают таблицу с примерно одинаковыми значениями эквивалентной комфортной температуры (таблица 2).

Таким образом, полученная эквивалентная комфортная температура для условий термического сопротивления одежды 1,0 clo и уровня метаболизма 1,1 met равна 24,2°С при PMV=+0,49 и 20,3°С при PMV=-0,49.

Вычисления эквивалентной комфортной температуры повторяют для других величин уровней метаболизма и термического сопротивления одежды. Результаты вычислений сведены в таблицу 3

Обобщают рассчитанные значения эквивалентной комфортной температуры для помещений класса комфортности В в виде аппроксимирующих выражений:

Данные обобщающие расчетные выражения параметра эквивалентной комфортной температуры соответствуют требуемому уровню теплового комфорта в помещениях класса комфортности В. Таким образом, получают единый обобщающий критерий для определения параметров теплового комфорта.

Примеры реализации способа

Пример 1

Требуется определить необходимую подвижность воздуха в помещении класса комфортности В, если известно, что системой жизнеобеспечения поддерживается температура воздуха 23°С, средняя радиационная температура составляет 25°С, одежда персонала имеет характеристику 0,9 clo, уровень метаболизма при выполнении работ составляет 1,3 met.

Из выражений (2) и (3) эквивалентной комфортной температуры для помещений класса комфортности В рассчитаны эквивалентные комфортные температуры:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo=23,86°С;

для PMV=-0,49 teqc=53,60*0.58met*0.70clo=19,20°С.

Преобразуя формулу для эквивалентной комфортной температуры (1) получаем выражение для скорости воздуха:

В результате расчета по формуле (4) получены значения для искомой скорости воздуха

для PMV=+0,49 νac=0,11 м/с;

для PMV=-0,49 νac=1,44 м/с.

Таким образом, для обеспечения состояния комфорта соответствующего помещениям класса В при заданных исходных данных скорость воздуха не должна быть ниже 0,11 м/с.

Пример 2

Требуется определить необходимую среднюю радиационную температуру в помещении класса комфортности В, если известно, что системой жизнеобеспечения поддерживается температура воздуха 25°С, подвижность воздуха 0,3 м/с, одежда персонала имеет характеристику 1,1 clo, уровень метаболизма при выполнении работ составляет 1,15 met.

Из выражений (2) и (3) эквивалентной комфортной температуры для помещений класса комфортности В рассчитаны эквивалентные комфортные температуры:

для PMV=+0,49 teqc=40,23*0,77met*0,82clo=23,83°С;

для PMV=-0,49 teqc=53,60*0.58met*0.70clo=19,39°C.

Преобразуя формулу для эквивалентной комфортной температуры (1) получаем выражение для средней радиационной температуры:

В результате расчета по формуле (5) получены значения для искомой средней радиационной температуры:

для PMV=+0,49

для PMV=-0,49

Таким образом, для обеспечения состояния комфорта соответствующего помещениям класса В при заданных исходных данных средняя радиационная температура должна находиться в пределах от 14,6 до 24,5°С.

Результаты апробации продемонстрировали эффективность применения заявляемого способа, подтвердили возможность достижения цели его создания и назначения, а именно, получения обобщающего параметра для определения уровня теплового комфорта в помещениях различного назначения.

Распространенность промышленных и бытовых объектов, для которых требуется оценить тепловой комфорт, обеспечивает заявляемому изобретению соответствие условию патентоспособности «промышленная применимость».


Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Способ определения параметров теплового комфорта в помещениях
Источник поступления информации: Роспатент

Показаны записи 91-100 из 105.
27.04.2019
№219.017.3d92

Способ спектрометрического определения температуры потока газов

Изобретение относится к области дистанционного измерения высоких температур газов, в частности к способам спектрометрического измерения температуры потока газов и обработки спектральных данных оптических датчиков определения температуры потоков газов и может быть использовано для...
Тип: Изобретение
Номер охранного документа: 0002686385
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.49df

Способ получения сахаристых продуктов из ржаного сырья

Изобретение относится к крахмалопаточной промышленности. Предложен способ получения сахарсодержащего сиропа из ржаной муки, включающий подготовку ржи измельчением до муки, смешивание ржаной муки с водой до образования суспензии, разжижение суспензии, нагрев смеси, гидролиз крахмала внесением...
Тип: Изобретение
Номер охранного документа: 0002686982
Дата охранного документа: 06.05.2019
24.05.2019
№219.017.5dd9

Способ идентификации тензора присоединенных моментов инерции тела и устройство для его осуществления

Изобретение относится к экспериментальной гидромеханике и может быть использовано для определения компонентов тензоров присоединенных моментов инерции тел в виде корпусов моделей судов, плавучих средств и сооружений. Способ заключается в том, что на теле в виде корпуса судна, находящемся в...
Тип: Изобретение
Номер охранного документа: 0002688964
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5def

Способ регистрации изображения с повышенным разрешением

Изобретение относится к средствам регистрации и обработки изображений и может быть использовано при мониторинге поверхности земли, в микроскопии, контроле качества на производстве. Способ регистрации изображения с повышенным разрешением, включает позиционирование фотоприемного устройства, в...
Тип: Изобретение
Номер охранного документа: 0002688965
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5f02

Хроматографический способ разделения компонентов смеси в растворе

Способ относится к аналитической химии и может быть использован для разделения компонентов в растворе и количественного определения состава смеси. Хроматографический способ разделения компонентов смеси в растворе включает подачу подвижной фазы с введенной в нее смесью разделяемых компонентов в...
Тип: Изобретение
Номер охранного документа: 0002688594
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6297

Способ определения бактерицидных свойств веществ

Изобретение относится к биотехнологии и микробиологии. Предложен способ определения бактерицидных свойств веществ. Способ включает инкубирование тестовых микроорганизмов Escherichia coli в количестве от 5×10 до 5×10 жизнеспособных клеток на мл в жидкой питательной среде в течение 4-8 ч при...
Тип: Изобретение
Номер охранного документа: 0002688328
Дата охранного документа: 21.05.2019
04.06.2019
№219.017.7375

Способ формирования массива волоконных решеток брэгга с различными длинами волн отражения

Изобретение относится к волоконно-оптическим технологиям, в частности к оптическим волокнам, которые имеют в сердцевине квазираспределенные структуры волоконных брэгговских решеток (ВБР) отличающиеся периодами на едином отрезке оптического волокна. Способ формирования массива ВБР с различными...
Тип: Изобретение
Номер охранного документа: 0002690230
Дата охранного документа: 31.05.2019
11.07.2019
№219.017.b263

Способ посола деликатесных рыб

Изобретение относится к рыбоперерабатывающей промышленности. Предложен способ посола деликатесных рыб, включающий первичную обработку рыбного сырья, разделку на филе, сухой посол и отправку полуфабриката на дальнейшие технологические операции в зависимости от вида выпускаемой продукции, при...
Тип: Изобретение
Номер охранного документа: 0002694184
Дата охранного документа: 09.07.2019
17.07.2019
№219.017.b5a2

Композиция пищевой добавки для производства мясных продуктов

Изобретение относится к мясной промышленности, а именно к производству сухой композиции пищевой добавки для производства мясных продуктов, например паштетов мясных или мясорастительных, ливерных колбас и фаршевых консервов. Композиция пищевой добавки изготовлена на основе молока сухого...
Тип: Изобретение
Номер охранного документа: 0002694552
Дата охранного документа: 16.07.2019
12.08.2019
№219.017.be79

Способ маркировки поверхности контролируемыми периодическими структурами

Изобретение относится к способу маркировки поверхности контролируемыми периодическими структурами и может использоваться для маркировки поверхности металлических изделий с целью защиты их от подделки с возможностью проверки подлинности изделия. Используют волоконный лазер наносекундной...
Тип: Изобретение
Номер охранного документа: 0002696804
Дата охранного документа: 06.08.2019
+ добавить свой РИД